亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This study presents a Graph Neural Networks (GNNs)-based approach for predicting the effective elastic moduli of rocks from their digital CT-scan images. We use the Mapper algorithm to transform 3D digital rock images into graph datasets, encapsulating essential geometrical information. These graphs, after training, prove effective in predicting elastic moduli. Our GNN model shows robust predictive capabilities across various graph sizes derived from various subcube dimensions. Not only does it perform well on the test dataset, but it also maintains high prediction accuracy for unseen rocks and unexplored subcube sizes. Comparative analysis with Convolutional Neural Networks (CNNs) reveals the superior performance of GNNs in predicting unseen rock properties. Moreover, the graph representation of microstructures significantly reduces GPU memory requirements (compared to the grid representation for CNNs), enabling greater flexibility in the batch size selection. This work demonstrates the potential of GNN models in enhancing the prediction accuracy of rock properties and boosting the efficiency of digital rock analysis.

相關內容

To estimate the direction of arrival (DOA) of multiple speakers with methods that use prototype transfer functions, frequency-dependent spatial spectra (SPS) are usually constructed. To make the DOA estimation robust, SPS from different frequencies can be combined. According to how the SPS are combined, frequency fusion mechanisms are categorized into narrowband, broadband, or speaker-grouped, where the latter mechanism requires a speaker-wise grouping of frequencies. For a binaural hearing aid setup, in this paper we propose an interaural time difference (ITD)-based speaker-grouped frequency fusion mechanism. By exploiting the DOA dependence of ITDs, frequencies can be grouped according to a common ITD and be used for DOA estimation of the respective speaker. We apply the proposed ITD-based speaker-grouped frequency fusion mechanism for different DOA estimation methods, namely the multiple signal classification, steered response power and a recently published method based on relative transfer function (RTF) vectors. In our experiments, we compare DOA estimation with different fusion mechanisms. For all considered DOA estimation methods, the proposed ITD-based speaker-grouped frequency fusion mechanism results in a higher DOA estimation accuracy compared with the narrowband and broadband fusion mechanisms.

This manuscript delves into the intersection of genomics and phenotypic prediction, focusing on the statistical innovation required to navigate the complexities introduced by noisy covariates and confounders. The primary emphasis is on the development of advanced robust statistical models tailored for genomic prediction from single nucleotide polymorphism (SNP) data collected from genome-wide association studies (GWAS) in plant and animal breeding and multi-field trials. The manuscript explores the limitations of traditional marker-assisted recurrent selection, highlighting the significance of incorporating all estimated effects of marker loci into the statistical framework and aiming to reduce the high dimensionality of GWAS data while preserving critical information. This paper introduces a new robust statistical framework for genomic prediction, employing one-stage and two-stage linear mixed model analyses along with utilizing the popular robust minimum density power divergence estimator (MDPDE) to estimate genetic effects on phenotypic traits. The study illustrates the superior performance of the proposed MDPDE-based genomic prediction and associated heritability estimation procedures over existing competitors through extensive empirical experiments on artificial datasets and application to a real-life maize breeding dataset. The results showcase the robustness and accuracy of the proposed MDPDE-based approaches, especially in the presence of data contamination, emphasizing their potential applications in improving breeding programs and advancing genomic prediction of phenotyping traits.

This paper proposes two methods for causal additive models with unobserved variables (CAM-UV). CAM-UV assumes that the causal functions take the form of generalized additive models and that latent confounders are present. First, we propose a method that leverages prior knowledge for efficient causal discovery. Then, we propose an extension of this method for inferring causality in time series data. The original CAM-UV algorithm differs from other existing causal function models in that it does not seek the causal order between observed variables, but rather aims to identify the causes for each observed variable. Therefore, the first proposed method in this paper utilizes prior knowledge, such as understanding that certain variables cannot be causes of specific others. Moreover, by incorporating the prior knowledge that causes precedes their effects in time, we extend the first algorithm to the second method for causal discovery in time series data. We validate the first proposed method by using simulated data to demonstrate that the accuracy of causal discovery increases as more prior knowledge is accumulated. Additionally, we test the second proposed method by comparing it with existing time series causal discovery methods, using both simulated data and real-world data.

Our study demonstrates the effective use of Large Language Models (LLMs) for automating the classification of complex datasets. We specifically target proposals of Decentralized Autonomous Organizations (DAOs), as the classification of this data requires the understanding of context and, therefore, depends on human expertise, leading to high costs associated with the task. The study applies an iterative approach to specify categories and further refine them and the prompt in each iteration, which led to an accuracy rate of 95% in classifying a set of 100 proposals. With this, we demonstrate the potential of LLMs to automate data labeling tasks that depend on textual context effectively.

Probabilistic mixture models are acknowledged as a valuable tool for unsupervised outlier detection owing to their interpretability and intuitive grounding in statistical principles. Within this framework, Dirichlet process mixture models emerge as a compelling alternative to conventional finite mixture models for both clustering and outlier detection tasks. However, despite their evident advantages, the widespread adoption of Dirichlet process mixture models in unsupervised outlier detection has been hampered by challenges related to computational inefficiency and sensitivity to outliers during the construction of detectors. To tackle these challenges, we propose a novel outlier detection method based on ensembles of Dirichlet process Gaussian mixtures. The proposed method is a fully unsupervised algorithm that capitalizes on random subspace and subsampling ensembles, not only ensuring efficient computation but also enhancing the robustness of the resulting outlier detector. Moreover, the proposed method leverages variational inference for Dirichlet process mixtures to ensure efficient and fast computation. Empirical studies with benchmark datasets demonstrate that our method outperforms existing approaches for unsupervised outlier detection.

We present a large-scale empirical study of how choices of configuration parameters affect performance in knowledge distillation (KD). An example of such a KD parameter is the measure of distance between the predictions of the teacher and the student, common choices for which include the mean squared error (MSE) and the KL-divergence. Although scattered efforts have been made to understand the differences between such options, the KD literature still lacks a systematic study on their general effect on student performance. We take an empirical approach to this question in this paper, seeking to find out the extent to which such choices influence student performance across 13 datasets from 4 NLP tasks and 3 student sizes. We quantify the cost of making sub-optimal choices and identify a single configuration that performs well across the board.

The dominating NLP paradigm of training a strong neural predictor to perform one task on a specific dataset has led to state-of-the-art performance in a variety of applications (eg. sentiment classification, span-prediction based question answering or machine translation). However, it builds upon the assumption that the data distribution is stationary, ie. that the data is sampled from a fixed distribution both at training and test time. This way of training is inconsistent with how we as humans are able to learn from and operate within a constantly changing stream of information. Moreover, it is ill-adapted to real-world use cases where the data distribution is expected to shift over the course of a model's lifetime. The first goal of this thesis is to characterize the different forms this shift can take in the context of natural language processing, and propose benchmarks and evaluation metrics to measure its effect on current deep learning architectures. We then proceed to take steps to mitigate the effect of distributional shift on NLP models. To this end, we develop methods based on parametric reformulations of the distributionally robust optimization framework. Empirically, we demonstrate that these approaches yield more robust models as demonstrated on a selection of realistic problems. In the third and final part of this thesis, we explore ways of efficiently adapting existing models to new domains or tasks. Our contribution to this topic takes inspiration from information geometry to derive a new gradient update rule which alleviate catastrophic forgetting issues during adaptation.

Automatic KB completion for commonsense knowledge graphs (e.g., ATOMIC and ConceptNet) poses unique challenges compared to the much studied conventional knowledge bases (e.g., Freebase). Commonsense knowledge graphs use free-form text to represent nodes, resulting in orders of magnitude more nodes compared to conventional KBs (18x more nodes in ATOMIC compared to Freebase (FB15K-237)). Importantly, this implies significantly sparser graph structures - a major challenge for existing KB completion methods that assume densely connected graphs over a relatively smaller set of nodes. In this paper, we present novel KB completion models that can address these challenges by exploiting the structural and semantic context of nodes. Specifically, we investigate two key ideas: (1) learning from local graph structure, using graph convolutional networks and automatic graph densification and (2) transfer learning from pre-trained language models to knowledge graphs for enhanced contextual representation of knowledge. We describe our method to incorporate information from both these sources in a joint model and provide the first empirical results for KB completion on ATOMIC and evaluation with ranking metrics on ConceptNet. Our results demonstrate the effectiveness of language model representations in boosting link prediction performance and the advantages of learning from local graph structure (+1.5 points in MRR for ConceptNet) when training on subgraphs for computational efficiency. Further analysis on model predictions shines light on the types of commonsense knowledge that language models capture well.

Pre-trained deep neural network language models such as ELMo, GPT, BERT and XLNet have recently achieved state-of-the-art performance on a variety of language understanding tasks. However, their size makes them impractical for a number of scenarios, especially on mobile and edge devices. In particular, the input word embedding matrix accounts for a significant proportion of the model's memory footprint, due to the large input vocabulary and embedding dimensions. Knowledge distillation techniques have had success at compressing large neural network models, but they are ineffective at yielding student models with vocabularies different from the original teacher models. We introduce a novel knowledge distillation technique for training a student model with a significantly smaller vocabulary as well as lower embedding and hidden state dimensions. Specifically, we employ a dual-training mechanism that trains the teacher and student models simultaneously to obtain optimal word embeddings for the student vocabulary. We combine this approach with learning shared projection matrices that transfer layer-wise knowledge from the teacher model to the student model. Our method is able to compress the BERT_BASE model by more than 60x, with only a minor drop in downstream task metrics, resulting in a language model with a footprint of under 7MB. Experimental results also demonstrate higher compression efficiency and accuracy when compared with other state-of-the-art compression techniques.

Deep Convolutional Neural Networks have pushed the state-of-the art for semantic segmentation provided that a large amount of images together with pixel-wise annotations is available. Data collection is expensive and a solution to alleviate it is to use transfer learning. This reduces the amount of annotated data required for the network training but it does not get rid of this heavy processing step. We propose a method of transfer learning without annotations on the target task for datasets with redundant content and distinct pixel distributions. Our method takes advantage of the approximate content alignment of the images between two datasets when the approximation error prevents the reuse of annotation from one dataset to another. Given the annotations for only one dataset, we train a first network in a supervised manner. This network autonomously learns to generate deep data representations relevant to the semantic segmentation. Then the images in the new dataset, we train a new network to generate a deep data representation that matches the one from the first network on the previous dataset. The training consists in a regression between feature maps and does not require any annotations on the new dataset. We show that this method reaches performances similar to a classic transfer learning on the PASCAL VOC dataset with synthetic transformations.

北京阿比特科技有限公司