Traditional robotic systems require complex implementations that are not always accessible or easy to use for Human-Robot Interaction (HRI) application developers. With the aim of simplifying the implementation of HRI applications, this paper introduces a novel real-time operating system (RTOS) designed for customizable HRI - RoboSync. By creating multi-level abstraction layers, the system enables users to define complex emotional and behavioral models without needing deep technical expertise. The system's modular architecture comprises a behavior modeling layer, a machine learning plugin configuration layer, a sensor checks customization layer, a scheduler that fits the need of HRI, and a communication and synchronization layer. This approach not only promotes ease of use without highly specialized skills but also ensures real-time responsiveness and adaptability. The primary functionality of the RTOS has been implemented for proof of concept and was tested on a CortexM4 microcontroller, demonstrating its potential for a wide range of lightweight simple-to-implement social robotics applications.
The emergence of generative Large Language Models (LLMs) emphasizes the need for accurate and efficient prompting approaches. LLMs are often applied in Few-Shot Learning (FSL) contexts, where tasks are executed with minimal training data. FSL has become popular in many Artificial Intelligence (AI) subdomains, including AI for health. Rare diseases affect a small fraction of the population. Rare disease identification from clinical notes inherently requires FSL techniques due to limited data availability. Manual data collection and annotation is both expensive and time-consuming. In this paper, we propose Models-Vote Prompting (MVP), a flexible prompting approach for improving the performance of LLM queries in FSL settings. MVP works by prompting numerous LLMs to perform the same tasks and then conducting a majority vote on the resulting outputs. This method achieves improved results to any one model in the ensemble on one-shot rare disease identification and classification tasks. We also release a novel rare disease dataset for FSL, available to those who signed the MIMIC-IV Data Use Agreement (DUA). Furthermore, in using MVP, each model is prompted multiple times, substantially increasing the time needed for manual annotation, and to address this, we assess the feasibility of using JSON for automating generative LLM evaluation.
Recently, foundational models such as CLIP and SAM have shown promising performance for the task of Zero-Shot Anomaly Segmentation (ZSAS). However, either CLIP-based or SAM-based ZSAS methods still suffer from non-negligible key drawbacks: 1) CLIP primarily focuses on global feature alignment across different inputs, leading to imprecise segmentation of local anomalous parts; 2) SAM tends to generate numerous redundant masks without proper prompt constraints, resulting in complex post-processing requirements. In this work, we innovatively propose a CLIP and SAM collaboration framework called ClipSAM for ZSAS. The insight behind ClipSAM is to employ CLIP's semantic understanding capability for anomaly localization and rough segmentation, which is further used as the prompt constraints for SAM to refine the anomaly segmentation results. In details, we introduce a crucial Unified Multi-scale Cross-modal Interaction (UMCI) module for interacting language with visual features at multiple scales of CLIP to reason anomaly positions. Then, we design a novel Multi-level Mask Refinement (MMR) module, which utilizes the positional information as multi-level prompts for SAM to acquire hierarchical levels of masks and merges them. Extensive experiments validate the effectiveness of our approach, achieving the optimal segmentation performance on the MVTec-AD and VisA datasets.
Place recognition is crucial for robot localization and loop closure in simultaneous localization and mapping (SLAM). Light Detection and Ranging (LiDAR), known for its robust sensing capabilities and measurement consistency even in varying illumination conditions, has become pivotal in various fields, surpassing traditional imaging sensors in certain applications. Among various types of LiDAR, spinning LiDARs are widely used, while non-repetitive scanning patterns have recently been utilized in robotics applications. Some LiDARs provide additional measurements such as reflectivity, Near Infrared (NIR), and velocity from Frequency modulated continuous wave (FMCW) LiDARs. Despite these advances, there is a lack of comprehensive datasets reflecting the broad spectrum of LiDAR configurations for place recognition. To tackle this issue, our paper proposes the HeLiPR dataset, curated especially for place recognition with heterogeneous LiDARs, embodying spatiotemporal variations. To the best of our knowledge, the HeLiPR dataset is the first heterogeneous LiDAR dataset supporting inter-LiDAR place recognition with both non-repetitive and spinning LiDARs, accommodating different field of view (FOV)s and varying numbers of rays. The dataset covers diverse environments, from urban cityscapes to high-dynamic freeways, over a month, enhancing adaptability and robustness across scenarios. Notably, HeLiPR includes trajectories parallel to MulRan sequences, making it valuable for research in heterogeneous LiDAR place recognition and long-term studies. The dataset is accessible at //sites.google.com/view/heliprdataset .
The advancement of machine learning and symbolic approaches have underscored their strengths and weaknesses in Natural Language Processing (NLP). While machine learning approaches are powerful in identifying patterns in data, they often fall short in learning commonsense and the factual knowledge required for the NLP tasks. Meanwhile, the symbolic methods excel in representing knowledge-rich data. However, they struggle to adapt dynamic data and generalize the knowledge. Bridging these two paradigms through hybrid approaches enables the alleviation of weaknesses in both while preserving their strengths. Recent studies extol the virtues of this union, showcasing promising results in a wide range of NLP tasks. In this paper, we present an overview of hybrid approaches used for NLP. Specifically, we delve into the state-of-the-art hybrid approaches used for a broad spectrum of NLP tasks requiring natural language understanding, generation, and reasoning. Furthermore, we discuss the existing resources available for hybrid approaches for NLP along with the challenges, offering a roadmap for future directions.
This study explores the crucial interplay between aggregators and building occupants in activating flexibility through Demand Response (DR) programs, with a keen focus on achieving robust decarbonization and fortifying the resilience of the energy system amidst the uncertainties presented by Renewable Energy Sources (RES). Firstly, it introduces a methodology of optimizing aggregated flexibility provision strategies in environments with limited data, utilizing Discrete Fourier Transformation (DFT) and clustering techniques to identify building occupant's activity patterns. Secondly, the study assesses the disaggregated flexibility provision of Heating Ventilation and Air Conditioning (HVAC) systems during DR events, employing machine learning and optimization techniques for precise, device-level analysis. The first approach offers a non-intrusive pathway for aggregators to provide flexibility services in environments of a single smart meter for the whole building's consumption, while the second approach carefully considers building occupants' thermal comfort profiles, while maximizing flexibility in case of existence of dedicated smart meters to the HVAC systems. Through the application of data-driven techniques and encompassing case studies from both industrial and residential buildings, this paper not only unveils pivotal opportunities for aggregators in the balancing and emerging flexibility markets but also successfully develops end-to-end practical tools for aggregators. Furthermore, the efficacy of this tool is validated through detailed case studies, substantiating its operational capability and contributing to the evolution of a resilient and efficient energy system.
We develop a new perspective of knowledge editing for large language models (LLMs) as decoding with constraints. We propose DeepEdit (Depth-first Search based Progressive Decoding for Knowledge Editing), a neuro-symbolic method that improves knowledge editing with better coherence of reasoning, relevance to the question, and awareness of updated knowledge. DeepEdit can be flexibly applied to all black-box LLMs: it does not require any access to the model parameters, representations, or output vocabulary distributions. DeepEdit progressively produces the high-quality reasoning steps towards effective knowledge editing. It utilizes a depth-first search to revise the LLMs' output, which improves the output's informativeness to the input question and awareness of the updated knowledge. Qualitatively, DeepEdit effectively controls LLMs to produce more succinct reasoning in accord with knowledge editing. Quantitatively, DeepEdit yields significant gains on MQuaKE, a challenging multi-hop question-answering dataset with knowledge editing. We release the source code at //github.com/wangywUST/DeepEdit.
Vision is a major component in several digital technologies and tools used in agriculture. The object detector, You Look Only Once (YOLO), has gained popularity in agriculture in a relatively short span due to its state-of-the-art performance. YOLO offers real-time detection with good accuracy and is implemented in various agricultural tasks, including monitoring, surveillance, sensing, automation, and robotics. The research and application of YOLO in agriculture are accelerating rapidly but are fragmented and multidisciplinary. Moreover, the performance characteristics (i.e., accuracy, speed, computation) of the object detector influence the rate of technology implementation and adoption in agriculture. Thus, the study aims to collect extensive literature to document and critically evaluate the advances and application of YOLO for agricultural object recognition. First, we conducted a bibliometric review of 257 articles to understand the scholarly landscape of YOLO in agricultural domain. Secondly, we conducted a systematic review of 30 articles to identify current knowledge, gaps, and modifications in YOLO for specific agricultural tasks. The study critically assesses and summarizes the information on YOLO's end-to-end learning approach, including data acquisition, processing, network modification, integration, and deployment. We also discussed task-specific YOLO algorithm modification and integration to meet the agricultural object or environment-specific challenges. In general, YOLO-integrated digital tools and technologies show the potential for real-time, automated monitoring, surveillance, and object handling to reduce labor, production cost, and environmental impact while maximizing resource efficiency. The study provides detailed documentation and significantly advances the existing knowledge on applying YOLO in agriculture, which can greatly benefit the scientific community.
Spiking Neural Networks (SNNs) that operate in an event-driven manner and employ binary spike representation have recently emerged as promising candidates for energy-efficient computing. However, a cost bottleneck arises in obtaining high-performance SNNs: training a SNN model requires a large number of time steps in addition to the usual learning iterations, hence this limits their energy efficiency. This paper proposes a general training framework that enhances feature learning and activation efficiency within a limited time step, providing a new solution for more energy-efficient SNNs. Our framework allows SNN neurons to learn robust spike feature from different receptive fields and update neuron states by utilizing both current stimuli and recurrence information transmitted from other neurons. This setting continuously complements information within a single time step. Additionally, we propose a projection function to merge these two stimuli to smoothly optimize neuron weights (spike firing threshold and activation). We evaluate the proposal for both convolution and recurrent models. Our experimental results indicate state-of-the-art visual classification tasks, including CIFAR10, CIFAR100, and TinyImageNet.Our framework achieves 72.41% and 72.31% top-1 accuracy with only 1 time step on CIFAR100 for CNNs and RNNs, respectively. Our method reduces 10x and 3x joule energy than a standard ANN and SNN, respectively, on CIFAR10, without additional time steps.
Introducing HyperSense, our co-designed hardware and software system efficiently controls Analog-to-Digital Converter (ADC) modules' data generation rate based on object presence predictions in sensor data. Addressing challenges posed by escalating sensor quantities and data rates, HyperSense reduces redundant digital data using energy-efficient low-precision ADC, diminishing machine learning system costs. Leveraging neurally-inspired HyperDimensional Computing (HDC), HyperSense analyzes real-time raw low-precision sensor data, offering advantages in handling noise, memory-centricity, and real-time learning. Our proposed HyperSense model combines high-performance software for object detection with real-time hardware prediction, introducing the novel concept of Intelligent Sensor Control. Comprehensive software and hardware evaluations demonstrate our solution's superior performance, evidenced by the highest Area Under the Curve (AUC) and sharpest Receiver Operating Characteristic (ROC) curve among lightweight models. Hardware-wise, our FPGA-based domain-specific accelerator tailored for HyperSense achieves a 5.6x speedup compared to YOLOv4 on NVIDIA Jetson Orin while showing up to 92.1% energy saving compared to the conventional system. These results underscore HyperSense's effectiveness and efficiency, positioning it as a promising solution for intelligent sensing and real-time data processing across diverse applications.
We present Emu, a system that semantically enhances multilingual sentence embeddings. Our framework fine-tunes pre-trained multilingual sentence embeddings using two main components: a semantic classifier and a language discriminator. The semantic classifier improves the semantic similarity of related sentences, whereas the language discriminator enhances the multilinguality of the embeddings via multilingual adversarial training. Our experimental results based on several language pairs show that our specialized embeddings outperform the state-of-the-art multilingual sentence embedding model on the task of cross-lingual intent classification using only monolingual labeled data.