亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Objects that move in response to the actions of a main character often make an important contribution to the visual richness of an animated scene. We use the term "secondary motion" to refer to passive motions generated in response to the movements of characters and other objects or environmental forces. Secondary motions aren't normally the mail focus of an animated scene, yet their absence can distract or disturb the viewer, destroying the illusion of reality created by the scene. We describe how to generate secondary motion by coupling physically based simulations of passive objects to actively controlled characters.

相關內容

Unsupervised speech models are becoming ubiquitous in the speech and machine learning communities. Upstream models are responsible for learning meaningful representations from raw audio. Later, these representations serve as input to downstream models to solve a number of tasks, such as keyword spotting or emotion recognition. As edge speech applications start to emerge, it is important to gauge how robust these cross-task representations are on edge devices with limited resources and different noise levels. To this end, in this study we evaluate the robustness of four different versions of HuBERT, namely: base, large, and extra-large versions, as well as a recent version termed Robust-HuBERT. Tests are conducted under different additive and convolutive noise conditions for three downstream tasks: keyword spotting, intent classification, and emotion recognition. Our results show that while larger models can provide some important robustness to environmental factors, they may not be applicable to edge applications. Smaller models, on the other hand, showed substantial accuracy drops in noisy conditions, especially in the presence of room reverberation. These findings suggest that cross-task speech representations are not yet ready for edge applications and innovations are still needed.

In this paper, we address the optimization problem of moments of Age of Information (AoI) for active and passive users in a random access network. In this network, active users broadcast sensing data while passive users only receive signals. Collisions occur when multiple active users transmit simultaneously, and passive users are unable to receive signals while any active user is transmitting. Each active user follows a Markov process for their transmissions. We aim to minimize the weighted sum of any moments of AoI for both active and passive users in this network. To achieve this, we employ a second-order analysis to analyze the system. Specifically, we characterize an active user's transmission Markov process by its mean and temporal process. We show that any moment of the AoI can be expressed a function of the mean and temporal variance, which, in turn, enables us to derive the optimal transmission Markov process. Our simulation results demonstrate that this proposed strategy outperforms other baseline policies that use different active user transmission models.

In this paper we consider the compression of asymptotically many i.i.d. copies of ensembles of mixed quantum states where the encoder has access to a side information system. The figure of merit is per-copy or local error criterion. Rate-distortion theory studies the trade-off between the compression rate and the per-copy error. The optimal trade-off can be characterized by the rate-distortion function, which is the best rate given a certain distortion. In this paper, we derive the rate-distortion function of mixed-state compression. The rate-distortion functions in the entanglement-assisted and unassisted scenarios are in terms of a single-letter mutual information quantity and the regularized entanglement of purification, respectively. For the general setting where the consumption of both communication and entanglement are considered, we present the full qubit-entanglement rate region. Our compression scheme covers both blind and visible compression models (and other models in between) depending on the structure of the side information system.

Given a set of probability measures $\mathcal{P}$ representing an agent's knowledge on the elements of a sigma-algebra $\mathcal{F}$, we can compute upper and lower bounds for the probability of any event $A\in\mathcal{F}$ of interest. A procedure generating a new assessment of beliefs is said to constrict $A$ if the bounds on the probability of $A$ after the procedure are contained in those before the procedure. It is well documented that (generalized) Bayes' updating does not allow for constriction, for all $A\in\mathcal{F}$. In this work, we show that constriction can take place with and without evidence being observed, and we characterize these possibilities.

In a clinical trial with a survival outcome, an interim analysis is often performed to allow for early stopping for efficacy. If the interim analysis is early in the trial, one might conclude that a new treatment is more effective (compared to e.g.\ a placebo) and stop the trial, whereas the survival curves in the trial arms are not mature for the research question under investigation, for example because the curves are still close to 1 at that time. This means that the decision is based on a small percentage of the events in the long run only; possibly the events of the more frail patients in the trial who may not be representative for the whole group of patients. It may not be sensible to conclude effectiveness based on so little information. Criteria to determine the moment the interim analysis will be performed, should be chosen with care, and include the maturity of the data at the time of the interim analysis. Here, the expected survival rates at the interim analysis play a role. In this paper we will derive the asymptotic distribution of the Kaplan-Meier curves at the (random) moment the interim analysis will be performed for a one and two arm clinical trial. Based on this distribution, an interval in which the Kaplan Meier curves will fall into (with probability 95\%) is derived and could be used to plan the moment of the interim analysis in the design stage of the trial, so before the trial starts.

Many state-of-the-art hyperparameter optimization (HPO) algorithms rely on model-based optimizers that learn surrogate models of the target function to guide the search. Gaussian processes are the de facto surrogate model due to their ability to capture uncertainty but they make strong assumptions about the observation noise, which might not be warranted in practice. In this work, we propose to leverage conformalized quantile regression which makes minimal assumptions about the observation noise and, as a result, models the target function in a more realistic and robust fashion which translates to quicker HPO convergence on empirical benchmarks. To apply our method in a multi-fidelity setting, we propose a simple, yet effective, technique that aggregates observed results across different resource levels and outperforms conventional methods across many empirical tasks.

Achieving resource efficiency while preserving end-user experience is non-trivial for cloud application operators. As cloud applications progressively adopt microservices, resource managers are faced with two distinct levels of system behavior: the end-to-end application latency and per-service resource usage. Translation between these two levels, however, is challenging because user requests traverse heterogeneous services that collectively (but unevenly) contribute to the end-to-end latency. This paper presents Autothrottle, a bi-level learning-assisted resource management framework for SLO-targeted microservices. It architecturally decouples mechanisms of application SLO feedback and service resource control, and bridges them with the notion of performance targets. This decoupling enables targeted control policies for these two mechanisms, where we combine lightweight heuristics and learning techniques. We evaluate Autothrottle on three microservice applications, with workload traces from production scenarios. Results show its superior CPU resource saving, up to 26.21% over the best-performing baseline, and up to 93.84% over all baselines.

We present a method to animate a character incorporating multiple part-wise motion priors (PMP). While previous works allow creating realistic articulated motions from reference data, the range of motion is largely limited by the available samples. Especially for the interaction-rich scenarios, it is impractical to attempt acquiring every possible interacting motion, as the combination of physical parameters increases exponentially. The proposed PMP allows us to assemble multiple part skills to animate a character, creating a diverse set of motions with different combinations of existing data. In our pipeline, we can train an agent with a wide range of part-wise priors. Therefore, each body part can obtain a kinematic insight of the style from the motion captures, or at the same time extract dynamics-related information from the additional part-specific simulation. For example, we can first train a general interaction skill, e.g. grasping, only for the dexterous part, and then combine the expert trajectories from the pre-trained agent with the kinematic priors of other limbs. Eventually, our whole-body agent learns a novel physical interaction skill even with the absence of the object trajectories in the reference motion sequence.

The protection of non-combatants in times of (fully) autonomous warfare raises the question of the timeliness of the international protective emblem. Incidents in the recent past indicate that it is becoming necessary to transfer the protective emblem to other dimensions of transmission and representation. (Fully) Autonomous weapon systems are often launched from a great distance to the aiming point and there may be no possibility for the operators to notice protective emblems at the point of impact. In this case, the weapon system would have to detect such protective emblems and, if necessary, disintegrate autonomously or request an abort via human-in-the-loop. In our paper, we suggest ways in which a cross-frequency protective emblem can be designed. On the one hand, the technical deployment, e.g. in the form of RADAR beacons, is considered, as well as the interpretation by methods of machine learning. With regard to the technical deployment, possibilities are considered to address different sensors and to send signals out as resiliently as possible. When considering different signals, approaches are considered as to how software can recognise the protective emblems under the influence of various boundary conditions and react to them accordingly. In particular, a distinction is made here between the recognition of actively emitted signals and passive protective signals, e.g. the recognition of wounded or surrendering persons via drone-based electro-optical and thermal cameras. Finally, methods of distribution are considered, including encryption and authentication of the received signal, and ethical aspects of possible misuse are examined.

We describe ACE0, a lightweight platform for evaluating the suitability and viability of AI methods for behaviour discovery in multiagent simulations. Specifically, ACE0 was designed to explore AI methods for multi-agent simulations used in operations research studies related to new technologies such as autonomous aircraft. Simulation environments used in production are often high-fidelity, complex, require significant domain knowledge and as a result have high R&D costs. Minimal and lightweight simulation environments can help researchers and engineers evaluate the viability of new AI technologies for behaviour discovery in a more agile and potentially cost effective manner. In this paper we describe the motivation for the development of ACE0.We provide a technical overview of the system architecture, describe a case study of behaviour discovery in the aerospace domain, and provide a qualitative evaluation of the system. The evaluation includes a brief description of collaborative research projects with academic partners, exploring different AI behaviour discovery methods.

北京阿比特科技有限公司