亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Personalized chatbots focus on endowing the chatbots with a consistent personality to behave like real users and further act as personal assistants. Previous studies have explored generating implicit user profiles from the user's dialogue history for building personalized chatbots. However, these studies only use the response generation loss to train the entire model, thus it is prone to suffer from the problem of data sparsity. Besides, they overemphasize the final generated response's quality while ignoring the correlations and fusions between the user's dialogue history, leading to rough data representations and performance degradation. To tackle these problems, we propose a self-supervised learning framework MCP for capturing better representations from users' dialogue history for personalized chatbots. Specifically, we apply contrastive sampling methods to leverage the supervised signals hidden in user dialog history, and generate the pre-training samples for enhancing the model. We design three pre-training tasks based on three types of contrastive pairs from user dialogue history, namely response pairs, sequence augmentation pairs, and user pairs. We pre-train the utterance encoder and the history encoder towards the contrastive objectives and use these pre-trained encoders for generating user profiles while personalized response generation. Experimental results on two real-world datasets show a significant improvement in our proposed model MCP compared with the existing methods.

相關內容

Pre-training models have shown their power in sequential recommendation. Recently, prompt has been widely explored and verified for tuning in NLP pre-training, which could help to more effectively and efficiently extract useful knowledge from pre-training models for downstream tasks, especially in cold-start scenarios. However, it is challenging to bring prompt-tuning from NLP to recommendation, since the tokens in recommendation (i.e., items) do not have explicit explainable semantics, and the sequence modeling should be personalized. In this work, we first introduces prompt to recommendation and propose a novel Personalized prompt-based recommendation (PPR) framework for cold-start recommendation. Specifically, we build the personalized soft prefix prompt via a prompt generator based on user profiles and enable a sufficient training of prompts via a prompt-oriented contrastive learning with both prompt- and behavior-based augmentations. We conduct extensive evaluations on various tasks. In both few-shot and zero-shot recommendation, PPR models achieve significant improvements over baselines on various metrics in three large-scale open datasets. We also conduct ablation tests and sparsity analysis for a better understanding of PPR. Moreover, We further verify PPR's universality on different pre-training models, and conduct explorations on PPR's other promising downstream tasks including cross-domain recommendation and user profile prediction.

The in-context learning capabilities of LLMs like GPT-3 allow annotators to customize an LLM to their specific tasks with a small number of examples. However, users tend to include only the most obvious patterns when crafting examples, resulting in underspecified in-context functions that fall short on unseen cases. Further, it is hard to know when "enough" examples have been included even for known patterns. In this work, we present ScatterShot, an interactive system for building high-quality demonstration sets for in-context learning. ScatterShot iteratively slices unlabeled data into task-specific patterns, samples informative inputs from underexplored or not-yet-saturated slices in an active learning manner, and helps users label more efficiently with the help of an LLM and the current example set. In simulation studies on two text perturbation scenarios, ScatterShot sampling improves the resulting few-shot functions by 4-5 percentage points over random sampling, with less variance as more examples are added. In a user study, ScatterShot greatly helps users in covering different patterns in the input space and labeling in-context examples more efficiently, resulting in better in-context learning and less user effort.

Multilingual machine translation (MMT) benefits from cross-lingual transfer but is a challenging multitask optimization problem. This is partly because there is no clear framework to systematically learn language-specific parameters. Self-supervised learning (SSL) approaches that leverage large quantities of monolingual data (where parallel data is unavailable) have shown promise by improving translation performance as complementary tasks to the MMT task. However, jointly optimizing SSL and MMT tasks is even more challenging. In this work, we first investigate how to utilize intra-distillation to learn more *language-specific* parameters and then show the importance of these language-specific parameters. Next, we propose a novel but simple SSL task, concurrent denoising, that co-trains with the MMT task by concurrently denoising monolingual data on both the encoder and decoder. Finally, we apply intra-distillation to this co-training approach. Combining these two approaches significantly improves MMT performance, outperforming three state-of-the-art SSL methods by a large margin, e.g., 11.3\% and 3.7\% improvement on an 8-language and a 15-language benchmark compared with MASS, respectively

Conversational AI and Question-Answering systems (QASs) for knowledge graphs (KGs) are both emerging research areas: they empower users with natural language interfaces for extracting information easily and effectively. Conversational AI simulates conversations with humans; however, it is limited by the data captured in the training datasets. In contrast, QASs retrieve the most recent information from a KG by understanding and translating the natural language question into a formal query supported by the database engine. In this paper, we present a comprehensive study of the characteristics of the existing alternatives towards combining both worlds into novel KG chatbots. Our framework compares two representative conversational models, ChatGPT and Galactica, against KGQAN, the current state-of-the-art QAS. We conduct a thorough evaluation using four real KGs across various application domains to identify the current limitations of each category of systems. Based on our findings, we propose open research opportunities to empower QASs with chatbot capabilities for KGs. All benchmarks and all raw results are available1 for further analysis.

In recent years, Graph Neural Networks have reported outstanding performance in tasks like community detection, molecule classification and link prediction. However, the black-box nature of these models prevents their application in domains like health and finance, where understanding the models' decisions is essential. Counterfactual Explanations (CE) provide these understandings through examples. Moreover, the literature on CE is flourishing with novel explanation methods which are tailored to graph learning. In this survey, we analyse the existing Graph Counterfactual Explanation methods, by providing the reader with an organisation of the literature according to a uniform formal notation for definitions, datasets, and metrics, thus, simplifying potential comparisons w.r.t to the method advantages and disadvantages. We discussed seven methods and sixteen synthetic and real datasets providing details on the possible generation strategies. We highlight the most common evaluation strategies and formalise nine of the metrics used in the literature. We first introduce the evaluation framework GRETEL and how it is possible to extend and use it while providing a further dimension of comparison encompassing reproducibility aspects. Finally, we provide a discussion on how counterfactual explanation interplays with privacy and fairness, before delving into open challenges and future works.

Neural architecture-based recommender systems have achieved tremendous success in recent years. However, when dealing with highly sparse data, they still fall short of expectation. Self-supervised learning (SSL), as an emerging technique to learn with unlabeled data, recently has drawn considerable attention in many fields. There is also a growing body of research proceeding towards applying SSL to recommendation for mitigating the data sparsity issue. In this survey, a timely and systematical review of the research efforts on self-supervised recommendation (SSR) is presented. Specifically, we propose an exclusive definition of SSR, on top of which we build a comprehensive taxonomy to divide existing SSR methods into four categories: contrastive, generative, predictive, and hybrid. For each category, the narrative unfolds along its concept and formulation, the involved methods, and its pros and cons. Meanwhile, to facilitate the development and evaluation of SSR models, we release an open-source library SELFRec, which incorporates multiple benchmark datasets and evaluation metrics, and has implemented a number of state-of-the-art SSR models for empirical comparison. Finally, we shed light on the limitations in the current research and outline the future research directions.

With the rise of powerful pre-trained vision-language models like CLIP, it becomes essential to investigate ways to adapt these models to downstream datasets. A recently proposed method named Context Optimization (CoOp) introduces the concept of prompt learning -- a recent trend in NLP -- to the vision domain for adapting pre-trained vision-language models. Specifically, CoOp turns context words in a prompt into a set of learnable vectors and, with only a few labeled images for learning, can achieve huge improvements over intensively-tuned manual prompts. In our study we identify a critical problem of CoOp: the learned context is not generalizable to wider unseen classes within the same dataset, suggesting that CoOp overfits base classes observed during training. To address the problem, we propose Conditional Context Optimization (CoCoOp), which extends CoOp by further learning a lightweight neural network to generate for each image an input-conditional token (vector). Compared to CoOp's static prompts, our dynamic prompts adapt to each instance and are thus less sensitive to class shift. Extensive experiments show that CoCoOp generalizes much better than CoOp to unseen classes, even showing promising transferability beyond a single dataset; and yields stronger domain generalization performance as well. Code is available at //github.com/KaiyangZhou/CoOp.

User engagement is a critical metric for evaluating the quality of open-domain dialogue systems. Prior work has focused on conversation-level engagement by using heuristically constructed features such as the number of turns and the total time of the conversation. In this paper, we investigate the possibility and efficacy of estimating utterance-level engagement and define a novel metric, {\em predictive engagement}, for automatic evaluation of open-domain dialogue systems. Our experiments demonstrate that (1) human annotators have high agreement on assessing utterance-level engagement scores; (2) conversation-level engagement scores can be predicted from properly aggregated utterance-level engagement scores. Furthermore, we show that the utterance-level engagement scores can be learned from data. These scores can improve automatic evaluation metrics for open-domain dialogue systems, as shown by correlation with human judgements. This suggests that predictive engagement can be used as a real-time feedback for training better dialogue models.

Incompleteness is a common problem for existing knowledge graphs (KGs), and the completion of KG which aims to predict links between entities is challenging. Most existing KG completion methods only consider the direct relation between nodes and ignore the relation paths which contain useful information for link prediction. Recently, a few methods take relation paths into consideration but pay less attention to the order of relations in paths which is important for reasoning. In addition, these path-based models always ignore nonlinear contributions of path features for link prediction. To solve these problems, we propose a novel KG completion method named OPTransE. Instead of embedding both entities of a relation into the same latent space as in previous methods, we project the head entity and the tail entity of each relation into different spaces to guarantee the order of relations in the path. Meanwhile, we adopt a pooling strategy to extract nonlinear and complex features of different paths to further improve the performance of link prediction. Experimental results on two benchmark datasets show that the proposed model OPTransE performs better than state-of-the-art methods.

It is always well believed that modeling relationships between objects would be helpful for representing and eventually describing an image. Nevertheless, there has not been evidence in support of the idea on image description generation. In this paper, we introduce a new design to explore the connections between objects for image captioning under the umbrella of attention-based encoder-decoder framework. Specifically, we present Graph Convolutional Networks plus Long Short-Term Memory (dubbed as GCN-LSTM) architecture that novelly integrates both semantic and spatial object relationships into image encoder. Technically, we build graphs over the detected objects in an image based on their spatial and semantic connections. The representations of each region proposed on objects are then refined by leveraging graph structure through GCN. With the learnt region-level features, our GCN-LSTM capitalizes on LSTM-based captioning framework with attention mechanism for sentence generation. Extensive experiments are conducted on COCO image captioning dataset, and superior results are reported when comparing to state-of-the-art approaches. More remarkably, GCN-LSTM increases CIDEr-D performance from 120.1% to 128.7% on COCO testing set.

北京阿比特科技有限公司