亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The in-context learning capabilities of LLMs like GPT-3 allow annotators to customize an LLM to their specific tasks with a small number of examples. However, users tend to include only the most obvious patterns when crafting examples, resulting in underspecified in-context functions that fall short on unseen cases. Further, it is hard to know when "enough" examples have been included even for known patterns. In this work, we present ScatterShot, an interactive system for building high-quality demonstration sets for in-context learning. ScatterShot iteratively slices unlabeled data into task-specific patterns, samples informative inputs from underexplored or not-yet-saturated slices in an active learning manner, and helps users label more efficiently with the help of an LLM and the current example set. In simulation studies on two text perturbation scenarios, ScatterShot sampling improves the resulting few-shot functions by 4-5 percentage points over random sampling, with less variance as more examples are added. In a user study, ScatterShot greatly helps users in covering different patterns in the input space and labeling in-context examples more efficiently, resulting in better in-context learning and less user effort.

相關內容

Large language models (LLMs) are competitive with the state of the art on a wide range of sentence-level translation datasets. However, their ability to translate paragraphs and documents remains unexplored because evaluation in these settings is costly and difficult. We show through a rigorous human evaluation that asking the Gpt-3.5 (text-davinci-003) LLM to translate an entire literary paragraph (e.g., from a novel) at once results in higher-quality translations than standard sentence-by-sentence translation across 18 linguistically-diverse language pairs (e.g., translating into and out of Japanese, Polish, and English). Our evaluation, which took approximately 350 hours of effort for annotation and analysis, is conducted by hiring translators fluent in both the source and target language and asking them to provide both span-level error annotations as well as preference judgments of which system's translations are better. We observe that discourse-level LLM translators commit fewer mistranslations, grammar errors, and stylistic inconsistencies than sentence-level approaches. With that said, critical errors still abound, including occasional content omissions, and a human translator's intervention remains necessary to ensure that the author's voice remains intact. We publicly release our dataset and error annotations to spur future research on evaluation of document-level literary translation.

Latent factor models are the most popular backbones for today's recommender systems owing to their prominent performance. Latent factor models represent users and items as real-valued embedding vectors for pairwise similarity computation, and all embeddings are traditionally restricted to a uniform size that is relatively large (e.g., 256-dimensional). With the exponentially expanding user base and item catalog in contemporary e-commerce, this design is admittedly becoming memory-inefficient. To facilitate lightweight recommendation, reinforcement learning (RL) has recently opened up opportunities for identifying varying embedding sizes for different users/items. However, challenged by search efficiency and learning an optimal RL policy, existing RL-based methods are restricted to highly discrete, predefined embedding size choices. This leads to a largely overlooked potential of introducing finer granularity into embedding sizes to obtain better recommendation effectiveness under a given memory budget. In this paper, we propose continuous input embedding size search (CIESS), a novel RL-based method that operates on a continuous search space with arbitrary embedding sizes to choose from. In CIESS, we further present an innovative random walk-based exploration strategy to allow the RL policy to efficiently explore more candidate embedding sizes and converge to a better decision. CIESS is also model-agnostic and hence generalizable to a variety of latent factor RSs, whilst experiments on two real-world datasets have shown state-of-the-art performance of CIESS under different memory budgets when paired with three popular recommendation models.

Recently, CLIP-guided image synthesis has shown appealing performance on adapting a pre-trained source-domain generator to an unseen target domain. It does not require any target-domain samples but only the textual domain labels. The training is highly efficient, e.g., a few minutes. However, existing methods still have some limitations in the quality of generated images and may suffer from the mode collapse issue. A key reason is that a fixed adaptation direction is applied for all cross-domain image pairs, which leads to identical supervision signals. To address this issue, we propose an Image-specific Prompt Learning (IPL) method, which learns specific prompt vectors for each source-domain image. This produces a more precise adaptation direction for every cross-domain image pair, endowing the target-domain generator with greatly enhanced flexibility. Qualitative and quantitative evaluations on various domains demonstrate that IPL effectively improves the quality and diversity of synthesized images and alleviates the mode collapse. Moreover, IPL is independent of the structure of the generative model, such as generative adversarial networks or diffusion models. Code is available at //github.com/Picsart-AI-Research/IPL-Zero-Shot-Generative-Model-Adaptation.

This paper aims to establish a generic multi-modal foundation model that has the scalable capability to massive downstream applications in E-commerce. Recently, large-scale vision-language pretraining approaches have achieved remarkable advances in the general domain. However, due to the significant differences between natural and product images, directly applying these frameworks for modeling image-level representations to E-commerce will be inevitably sub-optimal. To this end, we propose an instance-centric multi-modal pretraining paradigm called ECLIP in this work. In detail, we craft a decoder architecture that introduces a set of learnable instance queries to explicitly aggregate instance-level semantics. Moreover, to enable the model to focus on the desired product instance without reliance on expensive manual annotations, two specially configured pretext tasks are further proposed. Pretrained on the 100 million E-commerce-related data, ECLIP successfully extracts more generic, semantic-rich, and robust representations. Extensive experimental results show that, without further fine-tuning, ECLIP surpasses existing methods by a large margin on a broad range of downstream tasks, demonstrating the strong transferability to real-world E-commerce applications.

Optimization of experimental materials synthesis and characterization through active learning methods has been growing over the last decade, with examples ranging from measurements of diffraction on combinatorial alloys at synchrotrons, to searches through chemical space with automated synthesis robots for perovskites. In virtually all cases, the target property of interest for optimization is defined apriori with limited human feedback during operation. In contrast, here we present the development of a new type of human in the loop experimental workflow, via a Bayesian optimized active recommender system (BOARS), to shape targets on the fly, employing human feedback. We showcase examples of this framework applied to pre-acquired piezoresponse force spectroscopy of a ferroelectric thin film, and then implement this in real time on an atomic force microscope, where the optimization proceeds to find symmetric piezoresponse amplitude hysteresis loops. It is found that such features appear more affected by subsurface defects than the local domain structure. This work shows the utility of human-augmented machine learning approaches for curiosity-driven exploration of systems across experimental domains. The analysis reported here is summarized in Colab Notebook for the purpose of tutorial and application to other data: //github.com/arpanbiswas52/varTBO

We propose a novel class incremental learning approach by incorporating a feature augmentation technique motivated by adversarial attacks. We employ a classifier learned in the past to complement training examples rather than simply play a role as a teacher for knowledge distillation towards subsequent models. The proposed approach has a unique perspective to utilize the previous knowledge in class incremental learning since it augments features of arbitrary target classes using examples in other classes via adversarial attacks on a previously learned classifier. By allowing the cross-class feature augmentations, each class in the old tasks conveniently populates samples in the feature space, which alleviates the collapse of the decision boundaries caused by sample deficiency for the previous tasks, especially when the number of stored exemplars is small. This idea can be easily incorporated into existing class incremental learning algorithms without any architecture modification. Extensive experiments on the standard benchmarks show that our method consistently outperforms existing class incremental learning methods by significant margins in various scenarios, especially under an environment with an extremely limited memory budget.

Large language models (LLMs) have demonstrated their significant potential to be applied for addressing various application tasks. However, traditional recommender systems continue to face great challenges such as poor interactivity and explainability, which actually also hinder their broad deployment in real-world systems. To address these limitations, this paper proposes a novel paradigm called Chat-Rec (ChatGPT Augmented Recommender System) that innovatively augments LLMs for building conversational recommender systems by converting user profiles and historical interactions into prompts. Chat-Rec is demonstrated to be effective in learning user preferences and establishing connections between users and products through in-context learning, which also makes the recommendation process more interactive and explainable. What's more, within the Chat-Rec framework, user's preferences can transfer to different products for cross-domain recommendations, and prompt-based injection of information into LLMs can also handle the cold-start scenarios with new items. In our experiments, Chat-Rec effectively improve the results of top-k recommendations and performs better in zero-shot rating prediction task. Chat-Rec offers a novel approach to improving recommender systems and presents new practical scenarios for the implementation of AIGC (AI generated content) in recommender system studies.

In recent years, precision agriculture has gradually oriented farming closer to automation processes to support all the activities related to field management. Service robotics plays a predominant role in this evolution by deploying autonomous agents that can navigate fields while performing tasks without human intervention, such as monitoring, spraying, and harvesting. To execute these precise actions, mobile robots need a real-time perception system that understands their surroundings and identifies their targets in the wild. Generalizing to new crops and environmental conditions is critical for practical applications, as labeled samples are rarely available. In this paper, we investigate the problem of crop segmentation and propose a novel approach to enhance domain generalization using knowledge distillation. In the proposed framework, we transfer knowledge from an ensemble of models individually trained on source domains to a student model that can adapt to unseen target domains. To evaluate the proposed method, we present a synthetic multi-domain dataset for crop segmentation containing plants of variegate shapes and covering different terrain styles, weather conditions, and light scenarios for more than 50,000 samples. We demonstrate significant improvements in performance over state-of-the-art methods. Our approach provides a promising solution for domain generalization in crop segmentation and has the potential to enhance precision agriculture applications.

We present prompt distribution learning for effectively adapting a pre-trained vision-language model to address downstream recognition tasks. Our method not only learns low-bias prompts from a few samples but also captures the distribution of diverse prompts to handle the varying visual representations. In this way, we provide high-quality task-related content for facilitating recognition. This prompt distribution learning is realized by an efficient approach that learns the output embeddings of prompts instead of the input embeddings. Thus, we can employ a Gaussian distribution to model them effectively and derive a surrogate loss for efficient training. Extensive experiments on 12 datasets demonstrate that our method consistently and significantly outperforms existing methods. For example, with 1 sample per category, it relatively improves the average result by 9.1% compared to human-crafted prompts.

Object detection is an important and challenging problem in computer vision. Although the past decade has witnessed major advances in object detection in natural scenes, such successes have been slow to aerial imagery, not only because of the huge variation in the scale, orientation and shape of the object instances on the earth's surface, but also due to the scarcity of well-annotated datasets of objects in aerial scenes. To advance object detection research in Earth Vision, also known as Earth Observation and Remote Sensing, we introduce a large-scale Dataset for Object deTection in Aerial images (DOTA). To this end, we collect $2806$ aerial images from different sensors and platforms. Each image is of the size about 4000-by-4000 pixels and contains objects exhibiting a wide variety of scales, orientations, and shapes. These DOTA images are then annotated by experts in aerial image interpretation using $15$ common object categories. The fully annotated DOTA images contains $188,282$ instances, each of which is labeled by an arbitrary (8 d.o.f.) quadrilateral To build a baseline for object detection in Earth Vision, we evaluate state-of-the-art object detection algorithms on DOTA. Experiments demonstrate that DOTA well represents real Earth Vision applications and are quite challenging.

北京阿比特科技有限公司