亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

AI-based code generators have become pivotal in assisting developers in writing software starting from natural language (NL). However, they are trained on large amounts of data, often collected from unsanitized online sources (e.g., GitHub, HuggingFace). As a consequence, AI models become an easy target for data poisoning, i.e., an attack that injects malicious samples into the training data to generate vulnerable code. To address this threat, this work investigates the security of AI code generators by devising a targeted data poisoning strategy. We poison the training data by injecting increasing amounts of code containing security vulnerabilities and assess the attack's success on different state-of-the-art models for code generation. Our study shows that AI code generators are vulnerable to even a small amount of poison. Notably, the attack success strongly depends on the model architecture and poisoning rate, whereas it is not influenced by the type of vulnerabilities. Moreover, since the attack does not impact the correctness of code generated by pre-trained models, it is hard to detect. Lastly, our work offers practical insights into understanding and potentially mitigating this threat.

相關內容

代碼(Code)是專知網的一個重要知識資料文檔板塊,旨在整理收錄論文源代碼、復現代碼,經典工程代碼等,便于用戶查閱下載使用。

Depth-based 3D hand pose estimation is an important but challenging research task in human-machine interaction community. Recently, dense regression methods have attracted increasing attention in 3D hand pose estimation task, which provide a low computational burden and high accuracy regression way by densely regressing hand joint offset maps. However, large-scale regression offset values are often affected by noise and outliers, leading to a significant drop in accuracy. To tackle this, we re-formulate 3D hand pose estimation as a dense ordinal regression problem and propose a novel Dense Ordinal Regression 3D Pose Network (DOR3D-Net). Specifically, we first decompose offset value regression into sub-tasks of binary classifications with ordinal constraints. Then, each binary classifier can predict the probability of a binary spatial relationship relative to joint, which is easier to train and yield much lower level of noise. The estimated hand joint positions are inferred by aggregating the ordinal regression results at local positions with a weighted sum. Furthermore, both joint regression loss and ordinal regression loss are used to train our DOR3D-Net in an end-to-end manner. Extensive experiments on public datasets (ICVL, MSRA, NYU and HANDS2017) show that our design provides significant improvements over SOTA methods.

LiDAR semantic segmentation frameworks predominantly leverage geometry-based features to differentiate objects within a scan. While these methods excel in scenarios with clear boundaries and distinct shapes, their performance declines in environments where boundaries are blurred, particularly in off-road contexts. To address this, recent strides in 3D segmentation algorithms have focused on harnessing raw LiDAR intensity measurements to improve prediction accuracy. Despite these efforts, current learning-based models struggle to correlate the intricate connections between raw intensity and factors such as distance, incidence angle, material reflectivity, and atmospheric conditions. Building upon our prior work, this paper delves into the advantages of employing calibrated intensity (also referred to as reflectivity) within learning-based LiDAR semantic segmentation frameworks. We initially establish that incorporating reflectivity as an input enhances the existing LiDAR semantic segmentation model. Furthermore, we present findings that enable the model to learn to calibrate intensity can boost its performance. Through extensive experimentation on the off-road dataset Rellis-3D, we demonstrate notable improvements. Specifically, converting intensity to reflectivity results in a 4% increase in mean Intersection over Union (mIoU) when compared to using raw intensity in Off-road scenarios. Additionally, we also investigate the possible benefits of using calibrated intensity in semantic segmentation in urban environments (SemanticKITTI) and cross-sensor domain adaptation.

Watermarking approaches are proposed to identify if text being circulated is human or large language model (LLM) generated. The state-of-the-art watermarking strategy of Kirchenbauer et al. (2023a) biases the LLM to generate specific (``green'') tokens. However, determining the robustness of this watermarking method is an open problem. Existing attack methods fail to evade detection for longer text segments. We overcome this limitation, and propose {\em Self Color Testing-based Substitution (SCTS)}, the first ``color-aware'' attack. SCTS obtains color information by strategically prompting the watermarked LLM and comparing output tokens frequencies. It uses this information to determine token colors, and substitutes green tokens with non-green ones. In our experiments, SCTS successfully evades watermark detection using fewer number of edits than related work. Additionally, we show both theoretically and empirically that SCTS can remove the watermark for arbitrarily long watermarked text.

Posterior sampling for high-dimensional Bayesian inverse problems is a common challenge in real-world applications. Randomized Maximum Likelihood (RML) is an optimization based methodology that gives samples from an approximation to the posterior distribution. We develop a high-dimensional Bayesian Optimization (BO) approach based on Gaussian Process (GP) surrogate models to solve the RML problem. We demonstrate the benefits of our approach in comparison to alternative optimization methods on a variety of synthetic and real-world Bayesian inverse problems, including medical and magnetohydrodynamics applications.

Recent artificial intelligence (AI) systems have reached milestones in "grand challenges" ranging from Go to protein-folding. The capability to retrieve medical knowledge, reason over it, and answer medical questions comparably to physicians has long been viewed as one such grand challenge. Large language models (LLMs) have catalyzed significant progress in medical question answering; Med-PaLM was the first model to exceed a "passing" score in US Medical Licensing Examination (USMLE) style questions with a score of 67.2% on the MedQA dataset. However, this and other prior work suggested significant room for improvement, especially when models' answers were compared to clinicians' answers. Here we present Med-PaLM 2, which bridges these gaps by leveraging a combination of base LLM improvements (PaLM 2), medical domain finetuning, and prompting strategies including a novel ensemble refinement approach. Med-PaLM 2 scored up to 86.5% on the MedQA dataset, improving upon Med-PaLM by over 19% and setting a new state-of-the-art. We also observed performance approaching or exceeding state-of-the-art across MedMCQA, PubMedQA, and MMLU clinical topics datasets. We performed detailed human evaluations on long-form questions along multiple axes relevant to clinical applications. In pairwise comparative ranking of 1066 consumer medical questions, physicians preferred Med-PaLM 2 answers to those produced by physicians on eight of nine axes pertaining to clinical utility (p < 0.001). We also observed significant improvements compared to Med-PaLM on every evaluation axis (p < 0.001) on newly introduced datasets of 240 long-form "adversarial" questions to probe LLM limitations. While further studies are necessary to validate the efficacy of these models in real-world settings, these results highlight rapid progress towards physician-level performance in medical question answering.

Following unprecedented success on the natural language tasks, Transformers have been successfully applied to several computer vision problems, achieving state-of-the-art results and prompting researchers to reconsider the supremacy of convolutional neural networks (CNNs) as {de facto} operators. Capitalizing on these advances in computer vision, the medical imaging field has also witnessed growing interest for Transformers that can capture global context compared to CNNs with local receptive fields. Inspired from this transition, in this survey, we attempt to provide a comprehensive review of the applications of Transformers in medical imaging covering various aspects, ranging from recently proposed architectural designs to unsolved issues. Specifically, we survey the use of Transformers in medical image segmentation, detection, classification, reconstruction, synthesis, registration, clinical report generation, and other tasks. In particular, for each of these applications, we develop taxonomy, identify application-specific challenges as well as provide insights to solve them, and highlight recent trends. Further, we provide a critical discussion of the field's current state as a whole, including the identification of key challenges, open problems, and outlining promising future directions. We hope this survey will ignite further interest in the community and provide researchers with an up-to-date reference regarding applications of Transformer models in medical imaging. Finally, to cope with the rapid development in this field, we intend to regularly update the relevant latest papers and their open-source implementations at \url{//github.com/fahadshamshad/awesome-transformers-in-medical-imaging}.

As an effective strategy, data augmentation (DA) alleviates data scarcity scenarios where deep learning techniques may fail. It is widely applied in computer vision then introduced to natural language processing and achieves improvements in many tasks. One of the main focuses of the DA methods is to improve the diversity of training data, thereby helping the model to better generalize to unseen testing data. In this survey, we frame DA methods into three categories based on the diversity of augmented data, including paraphrasing, noising, and sampling. Our paper sets out to analyze DA methods in detail according to the above categories. Further, we also introduce their applications in NLP tasks as well as the challenges.

Generalization to out-of-distribution (OOD) data is a capability natural to humans yet challenging for machines to reproduce. This is because most learning algorithms strongly rely on the i.i.d.~assumption on source/target data, which is often violated in practice due to domain shift. Domain generalization (DG) aims to achieve OOD generalization by using only source data for model learning. Since first introduced in 2011, research in DG has made great progresses. In particular, intensive research in this topic has led to a broad spectrum of methodologies, e.g., those based on domain alignment, meta-learning, data augmentation, or ensemble learning, just to name a few; and has covered various vision applications such as object recognition, segmentation, action recognition, and person re-identification. In this paper, for the first time a comprehensive literature review is provided to summarize the developments in DG for computer vision over the past decade. Specifically, we first cover the background by formally defining DG and relating it to other research fields like domain adaptation and transfer learning. Second, we conduct a thorough review into existing methods and present a categorization based on their methodologies and motivations. Finally, we conclude this survey with insights and discussions on future research directions.

Conventional unsupervised multi-source domain adaptation (UMDA) methods assume all source domains can be accessed directly. This neglects the privacy-preserving policy, that is, all the data and computations must be kept decentralized. There exists three problems in this scenario: (1) Minimizing the domain distance requires the pairwise calculation of the data from source and target domains, which is not accessible. (2) The communication cost and privacy security limit the application of UMDA methods (e.g., the domain adversarial training). (3) Since users have no authority to check the data quality, the irrelevant or malicious source domains are more likely to appear, which causes negative transfer. In this study, we propose a privacy-preserving UMDA paradigm named Knowledge Distillation based Decentralized Domain Adaptation (KD3A), which performs domain adaptation through the knowledge distillation on models from different source domains. KD3A solves the above problems with three components: (1) A multi-source knowledge distillation method named Knowledge Vote to learn high-quality domain consensus knowledge. (2) A dynamic weighting strategy named Consensus Focus to identify both the malicious and irrelevant domains. (3) A decentralized optimization strategy for domain distance named BatchNorm MMD. The extensive experiments on DomainNet demonstrate that KD3A is robust to the negative transfer and brings a 100x reduction of communication cost compared with other decentralized UMDA methods. Moreover, our KD3A significantly outperforms state-of-the-art UMDA approaches.

Deep Learning (DL) is vulnerable to out-of-distribution and adversarial examples resulting in incorrect outputs. To make DL more robust, several posthoc anomaly detection techniques to detect (and discard) these anomalous samples have been proposed in the recent past. This survey tries to provide a structured and comprehensive overview of the research on anomaly detection for DL based applications. We provide a taxonomy for existing techniques based on their underlying assumptions and adopted approaches. We discuss various techniques in each of the categories and provide the relative strengths and weaknesses of the approaches. Our goal in this survey is to provide an easier yet better understanding of the techniques belonging to different categories in which research has been done on this topic. Finally, we highlight the unsolved research challenges while applying anomaly detection techniques in DL systems and present some high-impact future research directions.

北京阿比特科技有限公司