亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Many Natural Language Generation (NLG) tasks aim to generate a single output text given an input prompt. Other settings require the generation of multiple texts, e.g., for Synthetic Traffic Generation (STG). This generation task is crucial for training and evaluating QA systems as well as conversational agents, where the goal is to generate multiple questions or utterances resembling the linguistic variability of real users. In this paper, we show that common NLG metrics, like BLEU, are not suitable for evaluating STG. We propose and evaluate several metrics designed to compare the generated traffic to the distribution of real user texts. We validate our metrics with an automatic procedure to verify whether they capture different types of quality issues of generated data; we also run human annotations to verify the correlation with human judgements. Experiments on three tasks, i.e., Shopping Utterance Generation, Product Question Generation and Query Auto Completion, demonstrate that our metrics are effective for evaluating STG tasks, and improve the agreement with human judgement up to 20% with respect to common NLG metrics. We believe these findings can pave the way towards better solutions for estimating the representativeness of synthetic text data.

相關內容

在機器學習中,生成模(mo)型(xing)可(ke)以用來(lai)直接對數(shu)(shu)據建模(mo)(例(li)如(ru)根(gen)(gen)據某個(ge)變(bian)(bian)量的(de)概(gai)率(lv)密(mi)度函數(shu)(shu)進行數(shu)(shu)據采樣),也(ye)可(ke)以用來(lai)建立變(bian)(bian)量間(jian)的(de)條件概(gai)率(lv)分布(bu)。條件概(gai)率(lv)分布(bu)可(ke)以由生成模(mo)型(xing)根(gen)(gen)據貝葉斯定理(li)形成。

Supervised finetuning (SFT) on instruction datasets has played a crucial role in achieving the remarkable zero-shot generalization capabilities observed in modern large language models (LLMs). However, the annotation efforts required to produce high quality responses for instructions are becoming prohibitively expensive, especially as the number of tasks spanned by instruction datasets continues to increase. Active learning is effective in identifying useful subsets of samples to annotate from an unlabeled pool, but its high computational cost remains a barrier to its widespread applicability in the context of LLMs. To mitigate the annotation cost of SFT and circumvent the computational bottlenecks of active learning, we propose using experimental design. Experimental design techniques select the most informative samples to label, and typically maximize some notion of uncertainty and/or diversity. In our work, we implement a framework that evaluates several existing and novel experimental design techniques and find that these methods consistently yield significant gains in label efficiency with little computational overhead. On generative tasks, our methods achieve the same generalization performance with only $50\%$ of annotation cost required by random sampling.

Feature removal is a central building block for eXplainable AI (XAI), both for occlusion-based explanations (Shapley values) as well as their evaluation (pixel flipping, PF). However, occlusion strategies can vary significantly from simple mean replacement up to inpainting with state-of-the-art diffusion models. This ambiguity limits the usefulness of occlusion-based approaches. For example, PF benchmarks lead to contradicting rankings. This is amplified by competing PF measures: Features are either removed starting with most influential first (MIF) or least influential first (LIF). This study proposes two complementary perspectives to resolve this disagreement problem. Firstly, we address the common criticism of occlusion-based XAI, that artificial samples lead to unreliable model evaluations. We propose to measure the reliability by the R(eference)-Out-of-Model-Scope (OMS) score. The R-OMS score enables a systematic comparison of occlusion strategies and resolves the disagreement problem by grouping consistent PF rankings. Secondly, we show that the insightfulness of MIF and LIF is conversely dependent on the R-OMS score. To leverage this, we combine the MIF and LIF measures into the symmetric relevance gain (SRG) measure. This breaks the inherent connection to the underlying occlusion strategy and leads to consistent rankings. This resolves the disagreement problem, which we verify for a set of 40 different occlusion strategies.

We address the problem of checking the satisfiability of a set of constrained Horn clauses (CHCs) possibly including more than one query. We propose a transformation technique that takes as input a set of CHCs, including a set of queries, and returns as output a new set of CHCs, such that the transformed CHCs are satisfiable if and only if so are the original ones, and the transformed CHCs incorporate in each new query suitable information coming from the other ones so that the CHC satisfiability algorithm is able to exploit the relationships among all queries. We show that our proposed technique is effective on a non trivial benchmark of sets of CHCs that encode many verification problems for programs manipulating algebraic data types such as lists and trees.

As Federated Learning (FL) grows in popularity, new decentralized frameworks are becoming widespread. These frameworks leverage the benefits of decentralized environments to enable fast and energy-efficient inter-device communication. However, this growing popularity also intensifies the need for robust security measures. While existing research has explored various aspects of FL security, the role of adversarial node placement in decentralized networks remains largely unexplored. This paper addresses this gap by analyzing the performance of decentralized FL for various adversarial placement strategies when adversaries can jointly coordinate their placement within a network. We establish two baseline strategies for placing adversarial node: random placement and network centrality-based placement. Building on this foundation, we propose a novel attack algorithm that prioritizes adversarial spread over adversarial centrality by maximizing the average network distance between adversaries. We show that the new attack algorithm significantly impacts key performance metrics such as testing accuracy, outperforming the baseline frameworks by between 9% and 66.5% for the considered setups. Our findings provide valuable insights into the vulnerabilities of decentralized FL systems, setting the stage for future research aimed at developing more secure and robust decentralized FL frameworks.

We examine visual representations of data that make use of combinations of both 2D and 3D data mappings. Combining 2D and 3D representations is a common technique that allows viewers to understand multiple facets of the data with which they are interacting. While 3D representations focus on the spatial character of the data or the dedicated 3D data mapping, 2D representations often show abstract data properties and take advantage of the unique benefits of mapping to a plane. Many systems have used unique combinations of both types of data mappings effectively. Yet there are no systematic reviews of the methods in linking 2D and 3D representations. We systematically survey the relationships between 2D and 3D visual representations in major visualization publications -- IEEE VIS, IEEE TVCG, and EuroVis -- from 2012 to 2022. We closely examined 105 papers where 2D and 3D representations are connected visually, interactively, or through animation. These approaches are designed based on their visual environment, the relationships between their visual representations, and their possible layouts. Through our analysis, we introduce a design space as well as provide design guidelines for effectively linking 2D and 3D visual representations.

Existing knowledge graph (KG) embedding models have primarily focused on static KGs. However, real-world KGs do not remain static, but rather evolve and grow in tandem with the development of KG applications. Consequently, new facts and previously unseen entities and relations continually emerge, necessitating an embedding model that can quickly learn and transfer new knowledge through growth. Motivated by this, we delve into an expanding field of KG embedding in this paper, i.e., lifelong KG embedding. We consider knowledge transfer and retention of the learning on growing snapshots of a KG without having to learn embeddings from scratch. The proposed model includes a masked KG autoencoder for embedding learning and update, with an embedding transfer strategy to inject the learned knowledge into the new entity and relation embeddings, and an embedding regularization method to avoid catastrophic forgetting. To investigate the impacts of different aspects of KG growth, we construct four datasets to evaluate the performance of lifelong KG embedding. Experimental results show that the proposed model outperforms the state-of-the-art inductive and lifelong embedding baselines.

Translational distance-based knowledge graph embedding has shown progressive improvements on the link prediction task, from TransE to the latest state-of-the-art RotatE. However, N-1, 1-N and N-N predictions still remain challenging. In this work, we propose a novel translational distance-based approach for knowledge graph link prediction. The proposed method includes two-folds, first we extend the RotatE from 2D complex domain to high dimension space with orthogonal transforms to model relations for better modeling capacity. Second, the graph context is explicitly modeled via two directed context representations. These context representations are used as part of the distance scoring function to measure the plausibility of the triples during training and inference. The proposed approach effectively improves prediction accuracy on the difficult N-1, 1-N and N-N cases for knowledge graph link prediction task. The experimental results show that it achieves better performance on two benchmark data sets compared to the baseline RotatE, especially on data set (FB15k-237) with many high in-degree connection nodes.

Answering questions that require reading texts in an image is challenging for current models. One key difficulty of this task is that rare, polysemous, and ambiguous words frequently appear in images, e.g., names of places, products, and sports teams. To overcome this difficulty, only resorting to pre-trained word embedding models is far from enough. A desired model should utilize the rich information in multiple modalities of the image to help understand the meaning of scene texts, e.g., the prominent text on a bottle is most likely to be the brand. Following this idea, we propose a novel VQA approach, Multi-Modal Graph Neural Network (MM-GNN). It first represents an image as a graph consisting of three sub-graphs, depicting visual, semantic, and numeric modalities respectively. Then, we introduce three aggregators which guide the message passing from one graph to another to utilize the contexts in various modalities, so as to refine the features of nodes. The updated nodes have better features for the downstream question answering module. Experimental evaluations show that our MM-GNN represents the scene texts better and obviously facilitates the performances on two VQA tasks that require reading scene texts.

Named entity recognition (NER) is the task to identify text spans that mention named entities, and to classify them into predefined categories such as person, location, organization etc. NER serves as the basis for a variety of natural language applications such as question answering, text summarization, and machine translation. Although early NER systems are successful in producing decent recognition accuracy, they often require much human effort in carefully designing rules or features. In recent years, deep learning, empowered by continuous real-valued vector representations and semantic composition through nonlinear processing, has been employed in NER systems, yielding stat-of-the-art performance. In this paper, we provide a comprehensive review on existing deep learning techniques for NER. We first introduce NER resources, including tagged NER corpora and off-the-shelf NER tools. Then, we systematically categorize existing works based on a taxonomy along three axes: distributed representations for input, context encoder, and tag decoder. Next, we survey the most representative methods for recent applied techniques of deep learning in new NER problem settings and applications. Finally, we present readers with the challenges faced by NER systems and outline future directions in this area.

Visual Question Answering (VQA) models have struggled with counting objects in natural images so far. We identify a fundamental problem due to soft attention in these models as a cause. To circumvent this problem, we propose a neural network component that allows robust counting from object proposals. Experiments on a toy task show the effectiveness of this component and we obtain state-of-the-art accuracy on the number category of the VQA v2 dataset without negatively affecting other categories, even outperforming ensemble models with our single model. On a difficult balanced pair metric, the component gives a substantial improvement in counting over a strong baseline by 6.6%.

北京阿比特科技有限公司