亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Real quantum computers will be subject to complicated, qubit-dependent noise, instead of simple noise such as depolarizing noise with the same strength for all qubits. We can do quantum error correction more effectively if our decoding algorithms take into account this prior information about the specific noise present. This motivates us to consider the complexity of surface code decoding where the input to the decoding problem is not only the syndrome-measurement results, but also a noise model in the form of probabilities of single-qubit Pauli errors for every qubit. In this setting, we show that Maximum Probability Error (MPE) decoding and Maximum Likelihood (ML) decoding for the surface code are NP-hard and #P-hard, respectively. We reduce directly from SAT for MPE decoding, and from #SAT for ML decoding, by showing how to transform a boolean formula into a qubit-dependent Pauli noise model and set of syndromes that encode the satisfiability properties of the formula. We also give hardness of approximation results for MPE and ML decoding. These are worst-case hardness results that do not contradict the empirical fact that many efficient surface code decoders are correct in the average case (i.e., for most sets of syndromes and for most reasonable noise models). These hardness results are nicely analogous with the known hardness results for MPE and ML decoding of arbitrary stabilizer codes with independent $X$ and $Z$ noise.

相關內容

We consider estimation of the spot volatility in a stochastic boundary model with one-sided microstructure noise for high-frequency limit order prices. Based on discrete, noisy observations of an It\^o semimartingale with jumps and general stochastic volatility, we present a simple and explicit estimator using local order statistics. We establish consistency and stable central limit theorems as asymptotic properties. The asymptotic analysis builds upon an expansion of tail probabilities for the order statistics based on a generalized arcsine law. In order to use the involved distribution of local order statistics for a bias correction, an efficient numerical algorithm is developed. We demonstrate the finite-sample performance of the estimation in a Monte Carlo simulation.

Challenges to reproducibility and replicability have gained widespread attention over the past decade, driven by a number of large replication projects with lukewarm success rates. A nascent work has emerged developing algorithms to estimate, or predict, the replicability of published findings. The current study explores ways in which AI-enabled signals of confidence in research might be integrated into literature search. We interview 17 PhD researchers about their current processes for literature search and ask them to provide feedback on a prototype replicability estimation tool. Our findings suggest that information about replicability can support researchers throughout literature review and research design processes. However, explainability and interpretability of system outputs is critical, and potential drawbacks of AI-enabled confidence assessment need to be further studied before such tools could be widely accepted and deployed. We discuss implications for the design of technological tools to support scholarly activities and advance reproducibility and replicability.

Manifold learning flows are a class of generative modelling techniques that assume a low-dimensional manifold description of the data. The embedding of such a manifold into the high-dimensional space of the data is achieved via learnable invertible transformations. Therefore, once the manifold is properly aligned via a reconstruction loss, the probability density is tractable on the manifold and maximum likelihood can be used to optimize the network parameters. Naturally, the lower-dimensional representation of the data requires an injective-mapping. Recent approaches were able to enforce that the density aligns with the modelled manifold, while efficiently calculating the density volume-change term when embedding to the higher-dimensional space. However, unless the injective-mapping is analytically predefined, the learned manifold is not necessarily an efficient representation of the data. Namely, the latent dimensions of such models frequently learn an entangled intrinsic basis, with degenerate information being stored in each dimension. Alternatively, if a locally orthogonal and/or sparse basis is to be learned, here coined canonical intrinsic basis, it can serve in learning a more compact latent space representation. Toward this end, we propose a canonical manifold learning flow method, where a novel optimization objective enforces the transformation matrix to have few prominent and non-degenerate basis functions. We demonstrate that by minimizing the off-diagonal manifold metric elements $\ell_1$-norm, we can achieve such a basis, which is simultaneously sparse and/or orthogonal. Canonical manifold flow yields a more efficient use of the latent space, automatically generating fewer prominent and distinct dimensions to represent data, and a better approximation of target distributions than other manifold flow methods in most experiments we conducted, resulting in lower FID scores.

Question answering methods are well-known for leveraging data bias, such as the language prior in visual question answering and the position bias in machine reading comprehension (extractive question answering). Current debiasing methods often come at the cost of significant in-distribution performance to achieve favorable out-of-distribution generalizability, while non-debiasing methods sacrifice a considerable amount of out-of-distribution performance in order to obtain high in-distribution performance. Therefore, it is challenging for them to deal with the complicated changing real-world situations. In this paper, we propose a simple yet effective novel loss function with adaptive loose optimization, which seeks to make the best of both worlds for question answering. Our main technical contribution is to reduce the loss adaptively according to the ratio between the previous and current optimization state on mini-batch training data. This loose optimization can be used to prevent non-debiasing methods from overlearning data bias while enabling debiasing methods to maintain slight bias learning. Experiments on the visual question answering datasets, including VQA v2, VQA-CP v1, VQA-CP v2, GQA-OOD, and the extractive question answering dataset SQuAD demonstrate that our approach enables QA methods to obtain state-of-the-art in- and out-of-distribution performance in most cases. The source code has been released publicly in \url{//github.com/reml-group/ALO}.

In the emerging field of mechanical metamaterials, using periodic lattice structures as a primary ingredient is relatively frequent. However, the choice of aperiodic lattices in these structures presents unique advantages regarding failure, e.g., buckling or fracture, because avoiding repeated patterns prevents global failures, with local failures occurring in turn that can beneficially delay structural collapse. Therefore, it is expedient to develop models for computing efficiently the effective mechanical properties in lattices from different general features while addressing the challenge of presenting topologies (or graphs) of different sizes. In this paper, we develop a deep learning model to predict energetically-equivalent mechanical properties of linear elastic lattices effectively. Considering the lattice as a graph and defining material and geometrical features on such, we show that Graph Neural Networks provide more accurate predictions than a dense, fully connected strategy, thanks to the geometrically induced bias through graph representation, closer to the underlying equilibrium laws from mechanics solved in the direct problem. Leveraging the efficient forward-evaluation of a vast number of lattices using this surrogate enables the inverse problem, i.e., to obtain a structure having prescribed specific behavior, which is ultimately suitable for multiscale structural optimization problems.

Slope limiters play an essential role in maintaining the non-oscillatory behavior of high-resolution methods for nonlinear conservation laws. The family of minmod limiters serves as the prototype example. Here, we revisit the question of non-oscillatory behavior of high-resolution central schemes in terms of the slope limiter proposed by van Albada et. al. 1982. The van Albada (vA) limiter is smoother near extrema, and consequently, in many cases, it outperforms the results obtained using the standard minmod limiter. In particular, we prove that the vA limiter ensures 1D TVD stability and demonstrate that it yields noticeable improvement in computation of one- and two-dimensional systems.

This contribution introduces a model order reduction approach for an advection-reaction problem with a parametrized reaction function. The underlying discretization uses an ultraweak formulation with an $L^2$-like trial space and an 'optimal' test space as introduced by Demkowicz et al. This ensures the stability of the discretization and in addition allows for a symmetric reformulation of the problem in terms of a dual solution which can also be interpreted as the normal equations of an adjoint least-squares problem. Classic model order reduction techniques can then be applied to the space of dual solutions which also immediately gives a reduced primal space. We show that the necessary computations do not require the reconstruction of any primal solutions and can instead be performed entirely on the space of dual solutions. We prove exponential convergence of the Kolmogorov $N$-width and show that a greedy algorithm produces quasi-optimal approximation spaces for both the primal and the dual solution space. Numerical experiments based on the benchmark problem of a catalytic filter confirm the applicability of the proposed method.

The scaled boundary finite element method (SBFEM) has recently been employed as an efficient means to model three-dimensional structures, in particular when the geometry is provided as a voxel-based image. To this end, an octree decomposition of the computational domain is deployed and each cubic cell is treated as an SBFEM subdomain. The surfaces of each subdomain are discretized in the finite element sense. We improve on this idea by combining the semi-analytical concept of the SBFEM with certain transition elements on the subdomains' surfaces. Thus, we avoid the triangulation of surfaces employed in previous works and consequently reduce the number of surface elements and degrees of freedom. In addition, these discretizations allow coupling elements of arbitrary order such that local p-refinement can be achieved straightforwardly.

Accurately estimating the positions of multi-agent systems in indoor environments is challenging due to the lack of Global Navigation Satelite System (GNSS) signals. Noisy measurements of position and orientation can cause the integrated position estimate to drift without bound. Previous research has proposed using magnetic field simultaneous localization and mapping (SLAM) to compensate for position drift in a single agent. Here, we propose two novel algorithms that allow multiple agents to apply magnetic field SLAM using their own and other agents measurements. Our first algorithm is a centralized approach that uses all measurements collected by all agents in a single extended Kalman filter. This algorithm simultaneously estimates the agents position and orientation and the magnetic field norm in a central unit that can communicate with all agents at all times. In cases where a central unit is not available, and there are communication drop-outs between agents, our second algorithm is a distributed approach that can be employed. We tested both algorithms by estimating the position of magnetometers carried by three people in an optical motion capture lab with simulated odometry and simulated communication dropouts between agents. We show that both algorithms are able to compensate for drift in a case where single-agent SLAM is not. We also discuss the conditions for the estimate from our distributed algorithm to converge to the estimate from the centralized algorithm, both theoretically and experimentally. Our experiments show that, for a communication drop-out rate of 80 percent, our proposed distributed algorithm, on average, provides a more accurate position estimate than single-agent SLAM. Finally, we demonstrate the drift-compensating abilities of our centralized algorithm on a real-life pedestrian localization problem with multiple agents moving inside a building.

Large-scale language models (LLMs), such as ChatGPT, are becoming increasingly sophisticated and exhibit human-like capabilities, playing an essential role in assisting humans in a variety of everyday tasks. An important application of AI is interactive recommendation systems that respond to human inquiries and make recommendations tailored to the user. In most conventional interactive recommendation systems, the language model is used only as a dialogue model, and there is a separate recommendation system. This is due to the fact that the language model used as a dialogue system does not have the capability to serve as a recommendation system. Therefore, we will realize the construction of a dialogue system with recommendation capability by using OpenAI's Chat-GPT, which has a very high inference capability as a dialogue system and the ability to generate high-quality sentences, and verify the effectiveness of the system.

北京阿比特科技有限公司