Content Warning: This work contains examples that potentially implicate stereotypes, associations, and other harms that could be offensive to individuals in certain social groups.} Large pre-trained language models are acknowledged to carry social biases towards different demographics, which can further amplify existing stereotypes in our society and cause even more harm. Text-to-SQL is an important task, models of which are mainly adopted by administrative industries, where unfair decisions may lead to catastrophic consequences. However, existing Text-to-SQL models are trained on clean, neutral datasets, such as Spider and WikiSQL. This, to some extent, cover up social bias in models under ideal conditions, which nevertheless may emerge in real application scenarios. In this work, we aim to uncover and categorize social biases in Text-to-SQL models. We summarize the categories of social biases that may occur in structured data for Text-to-SQL models. We build test benchmarks and reveal that models with similar task accuracy can contain social biases at very different rates. We show how to take advantage of our methodology to uncover and assess social biases in the downstream Text-to-SQL task. We will release our code and data.
While the term `art' defies any concrete definition, this paper aims to examine how digital images produced by generative AI systems, such as Midjourney, have come to be so regularly referred to as such. The discourse around the classification of AI-generated imagery as art is currently somewhat homogeneous, lacking the more nuanced aspects that would apply to more traditional modes of artistic media production. This paper aims to bring important philosophical considerations to the surface of the discussion around AI-generated imagery in the context of art. We employ existing philosophical frameworks and theories of language to suggest that some AI-generated imagery, by virtue of its visual properties within these frameworks, can be presented as `readymades' for consideration as art.
Can social power endow social robots with the capacity to persuade? This paper represents our recent endeavor to design persuasive social robots. We have designed and run three different user studies to investigate the effectiveness of different bases of social power (inspired by French and Raven's theory) on peoples' compliance to the requests of social robots. The results show that robotic persuaders that exert social power (specifically from expert, reward, and coercion bases) demonstrate increased ability to influence humans. The first study provides a positive answer and shows that under the same circumstances, people with different personalities prefer robots using a specific social power base. In addition, social rewards can be useful in persuading individuals. The second study suggests that by employing social power, social robots are capable of persuading people objectively to select a less desirable choice among others. Finally, the third study shows that the effect of power on persuasion does not decay over time and might strengthen under specific circumstances. Moreover, exerting stronger social power does not necessarily lead to higher persuasion. Overall, we argue that the results of these studies are relevant for designing human--robot-interaction scenarios especially the ones aiming at behavioral change.
A growing body of work studies Blindspot Discovery Methods ("BDM"s): methods that use an image embedding to find semantically meaningful (i.e., united by a human-understandable concept) subsets of the data where an image classifier performs significantly worse. Motivated by observed gaps in prior work, we introduce a new framework for evaluating BDMs, SpotCheck, that uses synthetic image datasets to train models with known blindspots and a new BDM, PlaneSpot, that uses a 2D image representation. We use SpotCheck to run controlled experiments that identify factors that influence BDM performance (e.g., the number of blindspots in a model, or features used to define the blindspot) and show that PlaneSpot is competitive with and in many cases outperforms existing BDMs. Importantly, we validate these findings by designing additional experiments that use real image data from MS-COCO, a large image benchmark dataset. Our findings suggest several promising directions for future work on BDM design and evaluation. Overall, we hope that the methodology and analyses presented in this work will help facilitate a more rigorous science of blindspot discovery.
Large language models (LLMs) have significantly advanced the field of natural language processing (NLP), providing a highly useful, task-agnostic foundation for a wide range of applications. However, directly applying LLMs to solve sophisticated problems in specific domains meets many hurdles, caused by the heterogeneity of domain data, the sophistication of domain knowledge, the uniqueness of domain objectives, and the diversity of the constraints (e.g., various social norms, cultural conformity, religious beliefs, and ethical standards in the domain applications). Domain specification techniques are key to make large language models disruptive in many applications. Specifically, to solve these hurdles, there has been a notable increase in research and practices conducted in recent years on the domain specialization of LLMs. This emerging field of study, with its substantial potential for impact, necessitates a comprehensive and systematic review to better summarize and guide ongoing work in this area. In this article, we present a comprehensive survey on domain specification techniques for large language models, an emerging direction critical for large language model applications. First, we propose a systematic taxonomy that categorizes the LLM domain-specialization techniques based on the accessibility to LLMs and summarizes the framework for all the subcategories as well as their relations and differences to each other. Second, we present an extensive taxonomy of critical application domains that can benefit dramatically from specialized LLMs, discussing their practical significance and open challenges. Last, we offer our insights into the current research status and future trends in this area.
Rapid advancements in artificial intelligence (AI) have sparked growing concerns among experts, policymakers, and world leaders regarding the potential for increasingly advanced AI systems to pose catastrophic risks. Although numerous risks have been detailed separately, there is a pressing need for a systematic discussion and illustration of the potential dangers to better inform efforts to mitigate them. This paper provides an overview of the main sources of catastrophic AI risks, which we organize into four categories: malicious use, in which individuals or groups intentionally use AIs to cause harm; AI race, in which competitive environments compel actors to deploy unsafe AIs or cede control to AIs; organizational risks, highlighting how human factors and complex systems can increase the chances of catastrophic accidents; and rogue AIs, describing the inherent difficulty in controlling agents far more intelligent than humans. For each category of risk, we describe specific hazards, present illustrative stories, envision ideal scenarios, and propose practical suggestions for mitigating these dangers. Our goal is to foster a comprehensive understanding of these risks and inspire collective and proactive efforts to ensure that AIs are developed and deployed in a safe manner. Ultimately, we hope this will allow us to realize the benefits of this powerful technology while minimizing the potential for catastrophic outcomes.
The heterogeneous, geographically distributed infrastructure of fog computing poses challenges in data replication, data distribution, and data mobility for fog applications. Fog computing is still missing the necessary abstractions to manage application data, and fog application developers need to re-implement data management for every new piece of software. Proposed solutions are limited to certain application domains, such as the IoT, are not flexible in regard to network topology, or do not provide the means for applications to control the movement of their data. In this paper, we present FReD, a data replication middleware for the fog. FReD serves as a building block for configurable fog data distribution and enables low-latency, high-bandwidth, and privacy-sensitive applications. FReD is a common data access interface across heterogeneous infrastructure and network topologies, provides transparent and controllable data distribution, and can be integrated with applications from different domains. To evaluate our approach, we present a prototype implementation of FReD and show the benefits of developing with FReD using three case studies of fog computing applications.
This paper investigates the direct risks and harms associated with modern text-to-image generative models, such as DALL-E and Midjourney, through a comprehensive literature review. While these models offer unprecedented capabilities for generating images, their development and use introduce new types of risk that require careful consideration. Our review reveals significant knowledge gaps concerning the understanding and treatment of these risks despite some already being addressed. We offer a taxonomy of risks across six key stakeholder groups, inclusive of unexplored issues, and suggest future research directions. We identify 22 distinct risk types, spanning issues from data bias to malicious use. The investigation presented here is intended to enhance the ongoing discourse on responsible model development and deployment. By highlighting previously overlooked risks and gaps, it aims to shape subsequent research and governance initiatives, guiding them toward the responsible, secure, and ethically conscious evolution of text-to-image models.
Games and simulators can be a valuable platform to execute complex multi-agent, multiplayer, imperfect information scenarios with significant parallels to military applications: multiple participants manage resources and make decisions that command assets to secure specific areas of a map or neutralize opposing forces. These characteristics have attracted the artificial intelligence (AI) community by supporting development of algorithms with complex benchmarks and the capability to rapidly iterate over new ideas. The success of artificial intelligence algorithms in real-time strategy games such as StarCraft II have also attracted the attention of the military research community aiming to explore similar techniques in military counterpart scenarios. Aiming to bridge the connection between games and military applications, this work discusses past and current efforts on how games and simulators, together with the artificial intelligence algorithms, have been adapted to simulate certain aspects of military missions and how they might impact the future battlefield. This paper also investigates how advances in virtual reality and visual augmentation systems open new possibilities in human interfaces with gaming platforms and their military parallels.
Multi-stage ranking pipelines have been a practical solution in modern search systems, where the first-stage retrieval is to return a subset of candidate documents, and latter stages attempt to re-rank those candidates. Unlike re-ranking stages going through quick technique shifts during past decades, the first-stage retrieval has long been dominated by classical term-based models. Unfortunately, these models suffer from the vocabulary mismatch problem, which may block re-ranking stages from relevant documents at the very beginning. Therefore, it has been a long-term desire to build semantic models for the first-stage retrieval that can achieve high recall efficiently. Recently, we have witnessed an explosive growth of research interests on the first-stage semantic retrieval models. We believe it is the right time to survey current status, learn from existing methods, and gain some insights for future development. In this paper, we describe the current landscape of the first-stage retrieval models under a unified framework to clarify the connection between classical term-based retrieval methods, early semantic retrieval methods and neural semantic retrieval methods. Moreover, we identify some open challenges and envision some future directions, with the hope of inspiring more researches on these important yet less investigated topics.
Recent developments in image classification and natural language processing, coupled with the rapid growth in social media usage, have enabled fundamental advances in detecting breaking events around the world in real-time. Emergency response is one such area that stands to gain from these advances. By processing billions of texts and images a minute, events can be automatically detected to enable emergency response workers to better assess rapidly evolving situations and deploy resources accordingly. To date, most event detection techniques in this area have focused on image-only or text-only approaches, limiting detection performance and impacting the quality of information delivered to crisis response teams. In this paper, we present a new multimodal fusion method that leverages both images and texts as input. In particular, we introduce a cross-attention module that can filter uninformative and misleading components from weak modalities on a sample by sample basis. In addition, we employ a multimodal graph-based approach to stochastically transition between embeddings of different multimodal pairs during training to better regularize the learning process as well as dealing with limited training data by constructing new matched pairs from different samples. We show that our method outperforms the unimodal approaches and strong multimodal baselines by a large margin on three crisis-related tasks.