亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Face recognition systems have to deal with large variabilities (such as different poses, illuminations, and expressions) that might lead to incorrect matching decisions. These variabilities can be measured in terms of face image quality which is defined over the utility of a sample for recognition. Previous works on face recognition either do not employ this valuable information or make use of non-inherently fit quality estimates. In this work, we propose a simple and effective face recognition solution (QMagFace) that combines a quality-aware comparison score with a recognition model based on a magnitude-aware angular margin loss. The proposed approach includes model-specific face image qualities in the comparison process to enhance the recognition performance under unconstrained circumstances. Exploiting the linearity between the qualities and their comparison scores induced by the utilized loss, our quality-aware comparison function is simple and highly generalizable. The experiments conducted on several face recognition databases and benchmarks demonstrate that the introduced quality-awareness leads to consistent improvements in the recognition performance. Moreover, the proposed QMagFace approach performs especially well under challenging circumstances, such as cross-pose, cross-age, or cross-quality. Consequently, it leads to state-of-the-art performances on several face recognition benchmarks, such as 98.50% on AgeDB, 83.97% on XQLFQ, and 98.74% on CFP-FP. The code for QMagFace is publicly available.

相關內容

Facial emotion recognition is a vast and complex problem space within the domain of computer vision and thus requires a universally accepted baseline method with which to evaluate proposed models. While test datasets have served this purpose in the academic sphere real world application and testing of such models lacks any real comparison. Therefore we propose a framework in which models developed for FER can be compared and contrasted against one another in a constant standardized fashion. A lightweight convolutional neural network is trained on the AffectNet dataset a large variable dataset for facial emotion recognition and a web application is developed and deployed with our proposed framework as a proof of concept. The CNN is embedded into our application and is capable of instant real time facial emotion recognition. When tested on the AffectNet test set this model achieves high accuracy for emotion classification of eight different emotions. Using our framework the validity of this model and others can be properly tested by evaluating a model efficacy not only based on its accuracy on a sample test dataset, but also on in the wild experiments. Additionally, our application is built with the ability to save and store any image captured or uploaded to it for emotion recognition, allowing for the curation of more quality and diverse facial emotion recognition datasets.

: Deep learning methodologies have been used to create applications that can cause threats to privacy, democracy and national security and could be used to further amplify malicious activities. One of those deep learning-powered applications in recent times is synthesized videos of famous personalities. According to Forbes, Generative Adversarial Networks(GANs) generated fake videos growing exponentially every year and the organization known as Deeptrace had estimated an increase of deepfakes by 84% from the year 2018 to 2019. They are used to generate and modify human faces, where most of the existing fake videos are of prurient non-consensual nature, of which its estimates to be around 96% and some carried out impersonating personalities for cyber crime. In this paper, available video datasets are identified and a pretrained model BlazeFace is used to detect faces, and a ResNet and Xception ensembled architectured neural network trained on the dataset to achieve the goal of detection of fake faces in videos. The model is optimized over a loss value and log loss values and evaluated over its F1 score. Over a sample of data, it is observed that focal loss provides better accuracy, F1 score and loss as the gamma of the focal loss becomes a hyper parameter. This provides a k-folded accuracy of around 91% at its peak in a training cycle with the real world accuracy subjected to change over time as the model decays.

Face recognition is one of the most studied research topics in the community. In recent years, the research on face recognition has shifted to using 3D facial surfaces, as more discriminating features can be represented by the 3D geometric information. This survey focuses on reviewing the 3D face recognition techniques developed in the past ten years which are generally categorized into conventional methods and deep learning methods. The categorized techniques are evaluated using detailed descriptions of the representative works. The advantages and disadvantages of the techniques are summarized in terms of accuracy, complexity and robustness to face variation (expression, pose and occlusions, etc). The main contribution of this survey is that it comprehensively covers both conventional methods and deep learning methods on 3D face recognition. In addition, a review of available 3D face databases is provided, along with the discussion of future research challenges and directions.

There is a recent interest in investigating few-shot NER, where the low-resource target domain has different label sets compared with a resource-rich source domain. Existing methods use a similarity-based metric. However, they cannot make full use of knowledge transfer in NER model parameters. To address the issue, we propose a template-based method for NER, treating NER as a language model ranking problem in a sequence-to-sequence framework, where original sentences and statement templates filled by candidate named entity span are regarded as the source sequence and the target sequence, respectively. For inference, the model is required to classify each candidate span based on the corresponding template scores. Our experiments demonstrate that the proposed method achieves 92.55% F1 score on the CoNLL03 (rich-resource task), and significantly better than fine-tuning BERT 10.88%, 15.34%, and 11.73% F1 score on the MIT Movie, the MIT Restaurant, and the ATIS (low-resource task), respectively.

Scene text image contains two levels of contents: visual texture and semantic information. Although the previous scene text recognition methods have made great progress over the past few years, the research on mining semantic information to assist text recognition attracts less attention, only RNN-like structures are explored to implicitly model semantic information. However, we observe that RNN based methods have some obvious shortcomings, such as time-dependent decoding manner and one-way serial transmission of semantic context, which greatly limit the help of semantic information and the computation efficiency. To mitigate these limitations, we propose a novel end-to-end trainable framework named semantic reasoning network (SRN) for accurate scene text recognition, where a global semantic reasoning module (GSRM) is introduced to capture global semantic context through multi-way parallel transmission. The state-of-the-art results on 7 public benchmarks, including regular text, irregular text and non-Latin long text, verify the effectiveness and robustness of the proposed method. In addition, the speed of SRN has significant advantages over the RNN based methods, demonstrating its value in practical use.

Swapping text in scene images while preserving original fonts, colors, sizes and background textures is a challenging task due to the complex interplay between different factors. In this work, we present SwapText, a three-stage framework to transfer texts across scene images. First, a novel text swapping network is proposed to replace text labels only in the foreground image. Second, a background completion network is learned to reconstruct background images. Finally, the generated foreground image and background image are used to generate the word image by the fusion network. Using the proposing framework, we can manipulate the texts of the input images even with severe geometric distortion. Qualitative and quantitative results are presented on several scene text datasets, including regular and irregular text datasets. We conducted extensive experiments to prove the usefulness of our method such as image based text translation, text image synthesis, etc.

Face recognition systems are usually faced with unseen domains in real-world applications and show unsatisfactory performance due to their poor generalization. For example, a well-trained model on webface data cannot deal with the ID vs. Spot task in surveillance scenario. In this paper, we aim to learn a generalized model that can directly handle new unseen domains without any model updating. To this end, we propose a novel face recognition method via meta-learning named Meta Face Recognition (MFR). MFR synthesizes the source/target domain shift with a meta-optimization objective, which requires the model to learn effective representations not only on synthesized source domains but also on synthesized target domains. Specifically, we build domain-shift batches through a domain-level sampling strategy and get back-propagated gradients/meta-gradients on synthesized source/target domains by optimizing multi-domain distributions. The gradients and meta-gradients are further combined to update the model to improve generalization. Besides, we propose two benchmarks for generalized face recognition evaluation. Experiments on our benchmarks validate the generalization of our method compared to several baselines and other state-of-the-arts. The proposed benchmarks will be available at //github.com/cleardusk/MFR.

Ego hand gestures can be used as an interface in AR and VR environments. While the context of an image is important for tasks like scene understanding, object recognition, image caption generation and activity recognition, it plays a minimal role in ego hand gesture recognition. An ego hand gesture used for AR and VR environments conveys the same information regardless of the background. With this idea in mind, we present our work on ego hand gesture recognition that produces embeddings from RBG images with ego hands, which are simultaneously used for ego hand segmentation and ego gesture recognition. To this extent, we achieved better recognition accuracy (96.9%) compared to the state of the art (92.2%) on the biggest ego hand gesture dataset available publicly. We present a gesture recognition deep neural network which recognises ego hand gestures from videos (videos containing a single gesture) by generating and recognising embeddings of ego hands from image sequences of varying length. We introduce the concept of simultaneous segmentation and recognition applied to ego hand gestures, present the network architecture, the training procedure and the results compared to the state of the art on the EgoGesture dataset

It is becoming increasingly easy to automatically replace a face of one person in a video with the face of another person by using a pre-trained generative adversarial network (GAN). Recent public scandals, e.g., the faces of celebrities being swapped onto pornographic videos, call for automated ways to detect these Deepfake videos. To help developing such methods, in this paper, we present the first publicly available set of Deepfake videos generated from videos of VidTIMIT database. We used open source software based on GANs to create the Deepfakes, and we emphasize that training and blending parameters can significantly impact the quality of the resulted videos. To demonstrate this impact, we generated videos with low and high visual quality (320 videos each) using differently tuned parameter sets. We showed that the state of the art face recognition systems based on VGG and Facenet neural networks are vulnerable to Deepfake videos, with 85.62% and 95.00% false acceptance rates respectively, which means methods for detecting Deepfake videos are necessary. By considering several baseline approaches, we found that audio-visual approach based on lip-sync inconsistency detection was not able to distinguish Deepfake videos. The best performing method, which is based on visual quality metrics and is often used in presentation attack detection domain, resulted in 8.97% equal error rate on high quality Deepfakes. Our experiments demonstrate that GAN-generated Deepfake videos are challenging for both face recognition systems and existing detection methods, and the further development of face swapping technology will make it even more so.

With the development of deep learning, Deep Metric Learning (DML) has achieved great improvements in face recognition. Specifically, the widely used softmax loss in the training process often bring large intra-class variations, and feature normalization is only exploited in the testing process to compute the pair similarities. To bridge the gap, we impose the intra-class cosine similarity between the features and weight vectors in softmax loss larger than a margin in the training step, and extend it from four aspects. First, we explore the effect of a hard sample mining strategy. To alleviate the human labor of adjusting the margin hyper-parameter, a self-adaptive margin updating strategy is proposed. Then, a normalized version is given to take full advantage of the cosine similarity constraint. Furthermore, we enhance the former constraint to force the intra-class cosine similarity larger than the mean inter-class cosine similarity with a margin in the exponential feature projection space. Extensive experiments on Labeled Face in the Wild (LFW), Youtube Faces (YTF) and IARPA Janus Benchmark A (IJB-A) datasets demonstrate that the proposed methods outperform the mainstream DML methods and approach the state-of-the-art performance.

北京阿比特科技有限公司