亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this paper, we consider the Maximum-Profit Routing Problem (MPRP), introduced in \cite{Armaselu-PETRA}. In MPRP, the goal is to route the given fleet of vehicles to pickup goods from specified sites in such a way as to maximize the profit, i.e., total quantity collected minus travelling costs. Although deterministic approximation algorithms are known for the problem, currently there is no randomized algorithm. In this paper, we propose the first randomized algorithm for MPRP.

相關內容

We study the online variant of the Min-Sum Set Cover (MSSC) problem, a generalization of the well-known list update problem. In the MSSC problem, an algorithm has to maintain the time-varying permutation of the list of $n$ elements, and serve a sequence of requests $R_1, R_2, \dots, R_t, \dots$. Each $R_t$ is a subset of elements of cardinality at most $r$. For a requested set $R_t$, an online algorithm has to pay the cost equal to the position of the first element from $R_t$ on its list. Then, it may arbitrarily permute its list, paying the number of swapped adjacent element pairs. We present the first constructive deterministic algorithm for this problem, whose competitive ratio does not depend on $n$. Our algorithm is $O(r^2)$-competitive, which beats both the existential upper bound of $O(r^4)$ by Bienkowski and Mucha [AAAI '23] and the previous constructive bound of $O(r^{3/2} \cdot \sqrt{n})$ by Fotakis et al. [ICALP '20]. Furthermore, we show that our algorithm attains an asymptotically optimal competitive ratio of $O(r)$ when compared to the best fixed permutation of elements.

Robot programming tools ranging from inverse kinematics (IK) to model predictive control (MPC) are most often described as constrained optimization problems. Even though there are currently many commercially-available second-order solvers, robotics literature recently focused on efficient implementations and improvements over these solvers for real-time robotic applications. However, most often, these implementations stay problem-specific and are not easy to access or implement, or do not exploit the geometric aspect of the robotics problems. In this work, we propose to solve these problems using a fast, easy-to-implement first-order method that fully exploits the geometric constraints via Euclidean projections, called Augmented Lagrangian Spectral Projected Gradient Descent (ALSPG). We show that 1. using projections instead of full constraints and gradients improves the performance of the solver and 2. ALSPG stays competitive to the standard second-order methods such as iLQR in the unconstrained case. We showcase these results with IK and motion planning problems on simulated examples and with an MPC problem on a 7-axis manipulator experiment.

In this paper, practically computable low-order approximations of potentially high-dimensional differential equations driven by geometric rough paths are proposed and investigated. In particular, equations are studied that cover the linear setting, but we allow for a certain type of dissipative nonlinearity in the drift as well. In a first step, a linear subspace is found that contains the solution space of the underlying rough differential equation (RDE). This subspace is associated to covariances of linear Ito-stochastic differential equations which is shown exploiting a Gronwall lemma for matrix differential equations. Orthogonal projections onto the identified subspace lead to a first exact reduced order system. Secondly, a linear map of the RDE solution (quantity of interest) is analyzed in terms of redundant information meaning that state variables are found that do not contribute to the quantity of interest. Once more, a link to Ito-stochastic differential equations is used. Removing such unnecessary information from the RDE provides a further dimension reduction without causing an error. Finally, we discretize a linear parabolic rough partial differential equation in space. The resulting large-order RDE is subsequently tackled with the exact reduction techniques studied in this paper. We illustrate the enormous complexity reduction potential in the corresponding numerical experiments.

Randomized controlled trials (RCTs) are the gold standard for causal inference, but they are often powered only for average effects, making estimation of heterogeneous treatment effects (HTEs) challenging. Conversely, large-scale observational studies (OS) offer a wealth of data but suffer from confounding bias. Our paper presents a novel framework to leverage OS data for enhancing the efficiency in estimating conditional average treatment effects (CATEs) from RCTs while mitigating common biases. We propose an innovative approach to combine RCTs and OS data, expanding the traditionally used control arms from external sources. The framework relaxes the typical assumption of CATE invariance across populations, acknowledging the often unaccounted systematic differences between RCT and OS participants. We demonstrate this through the special case of a linear outcome model, where the CATE is sparsely different between the two populations. The core of our framework relies on learning potential outcome means from OS data and using them as a nuisance parameter in CATE estimation from RCT data. We further illustrate through experiments that using OS findings reduces the variance of the estimated CATE from RCTs and can decrease the required sample size for detecting HTEs.

The classic problem of constrained pathfinding is a well-studied, yet challenging, topic in AI with a broad range of applications in various areas such as communication and transportation. The Weight Constrained Shortest Path Problem (WCSPP), the base form of constrained pathfinding with only one side constraint, aims to plan a cost-optimum path with limited weight/resource usage. Given the bi-criteria nature of the problem (i.e., dealing with the cost and weight of paths), methods addressing the WCSPP have some common properties with bi-objective search. This paper leverages the recent state-of-the-art techniques in both constrained pathfinding and bi-objective search and presents two new solution approaches to the WCSPP on the basis of A* search, both capable of solving hard WCSPP instances on very large graphs. We empirically evaluate the performance of our algorithms on a set of large and realistic problem instances and show their advantages over the state-of-the-art algorithms in both time and space metrics. This paper also investigates the importance of priority queues in constrained search with A*. We show with extensive experiments on both realistic and randomised graphs how bucket-based queues without tie-breaking can effectively improve the algorithmic performance of exhaustive A*-based bi-criteria searches.

Models with intractable normalizing functions have numerous applications. Because the normalizing constants are functions of the parameters of interest, standard Markov chain Monte Carlo cannot be used for Bayesian inference for these models. A number of algorithms have been developed for such models. Some have the posterior distribution as their asymptotic distribution. Other ``asymptotically inexact'' algorithms do not possess this property. There is limited guidance for evaluating approximations based on these algorithms. Hence it is very hard to tune them. We propose two new diagnostics that address these problems for intractable normalizing function models. Our first diagnostic, inspired by the second Bartlett identity, is in principle broadly applicable to Monte Carlo approximations beyond the normalizing function problem. We develop an approximate version of this diagnostic that is applicable to intractable normalizing function problems. Our second diagnostic is a Monte Carlo approximation to a kernel Stein discrepancy-based diagnostic introduced by Gorham and Mackey (2017). We provide theoretical justification for our methods and apply them to several algorithms in challenging simulated and real data examples including an Ising model, an exponential random graph model, and a Conway--Maxwell--Poisson regression model, obtaining interesting insights about the algorithms in these contexts.

The convexification numerical method with the rigorously established global convergence property is constructed for a problem for the Mean Field Games System of the second order. This is the problem of the retrospective analysis of a game of infinitely many rational players. In addition to traditional initial and terminal conditions, one extra terminal condition is assumed to be known. Carleman estimates and a Carleman Weight Function play the key role. Numerical experiments demonstrate a good performance for complicated functions. Various versions of the convexification have been actively used by this research team for a number of years to numerically solve coefficient inverse problems.

Mathematical Selection is a method in which we select a particular choice from a set of such. It have always been an interesting field of study for mathematicians. Accordingly, Combinatorial Optimization is a sub field of this domain of Mathematical Selection, where we generally, deal with problems subjecting to Operation Research, Artificial Intelligence and many more promising domains. In a broader sense, an optimization problem entails maximising or minimising a real function by systematically selecting input values from within an allowed set and computing the function's value. A broad region of applied mathematics is the generalisation of metaheuristic theory and methods to other formulations. More broadly, optimization entails determining the finest virtues of some fitness function, offered a fixed space, which may include a variety of distinct types of decision variables and contexts. In this work, we will be working on the famous Balanced Assignment Problem, and will propose a comparative analysis on the Complexity Metrics of Computational Time for different Notions of solving the Balanced Assignment Problem.

Here we propose a new nonparametric framework for two-sample testing, named as the OVL-$q$ ($q = 1, 2, \ldots$). This can be regarded as a natural extension of the Smirnov test, which is equivalent to the OVL-1. We specifically focus on the OVL-2, implement its fast algorithm, and show its superiority over other statistical tests in some experiments.

We prove the first polynomial separation between randomized and deterministic time-space tradeoffs of multi-output functions. In particular, we present a total function that on the input of $n$ elements in $[n]$, outputs $O(n)$ elements, such that: (1) There exists a randomized oblivious algorithm with space $O(\log n)$, time $O(n\log n)$ and one-way access to randomness, that computes the function with probability $1-O(1/n)$; (2) Any deterministic oblivious branching program with space $S$ and time $T$ that computes the function must satisfy $T^2S\geq\Omega(n^{2.5}/\log n)$. This implies that logspace randomized algorithms for multi-output functions cannot be black-box derandomized without an $\widetilde{\Omega}(n^{1/4})$ overhead in time. Since previously all the polynomial time-space tradeoffs of multi-output functions are proved via the Borodin-Cook method, which is a probabilistic method that inherently gives the same lower bound for randomized and deterministic branching programs, our lower bound proof is intrinsically different from previous works. We also examine other natural candidates for proving such separations, and show that any polynomial separation for these problems would resolve the long-standing open problem of proving $n^{1+\Omega(1)}$ time lower bound for decision problems with $\mathrm{polylog}(n)$ space.

北京阿比特科技有限公司