亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The convexification numerical method with the rigorously established global convergence property is constructed for a problem for the Mean Field Games System of the second order. This is the problem of the retrospective analysis of a game of infinitely many rational players. In addition to traditional initial and terminal conditions, one extra terminal condition is assumed to be known. Carleman estimates and a Carleman Weight Function play the key role. Numerical experiments demonstrate a good performance for complicated functions. Various versions of the convexification have been actively used by this research team for a number of years to numerically solve coefficient inverse problems.

相關內容

We consider the problem of evaluating distinct multivariate polynomials over several massive datasets in a distributed computing system with a single master node and multiple worker nodes. We focus on the general case when each multivariate polynomial is evaluated over its corresponding dataset and propose a generalization of the Lagrange Coded Computing framework (Yu et al. 2019) to perform all computations simultaneously while providing robustness against stragglers who do not respond in time, adversarial workers who respond with wrong computation and information-theoretic security of dataset against colluding workers. Our scheme introduces a small computation overhead which results in a reduction in download cost and also offers comparable resistance to stragglers over existing solutions. On top of it, we also propose two verification schemes to detect the presence of adversaries, which leads to incorrect results, without involving additional nodes.

The conjugate gradient method is a crucial first-order optimization method that generally converges faster than the steepest descent method, and its computational cost is much lower than the second-order methods. However, while various types of conjugate gradient methods have been studied in Euclidean spaces and on Riemannian manifolds, there has little study for those in distributed scenarios. This paper proposes a decentralized Riemannian conjugate gradient descent (DRCGD) method that aims at minimizing a global function over the Stiefel manifold. The optimization problem is distributed among a network of agents, where each agent is associated with a local function, and communication between agents occurs over an undirected connected graph. Since the Stiefel manifold is a non-convex set, a global function is represented as a finite sum of possibly non-convex (but smooth) local functions. The proposed method is free from expensive Riemannian geometric operations such as retractions, exponential maps, and vector transports, thereby reducing the computational complexity required by each agent. To the best of our knowledge, DRCGD is the first decentralized Riemannian conjugate gradient algorithm to achieve global convergence over the Stiefel manifold.

We introduce a theoretical framework for differentiable surface evolution that allows discrete topology changes through the use of topological derivatives for variational optimization of image functionals. While prior methods for inverse rendering of geometry rely on silhouette gradients for topology changes, such signals are sparse. In contrast, our theory derives topological derivatives that relate the introduction of vanishing holes and phases to changes in image intensity. As a result, we enable differentiable shape perturbations in the form of hole or phase nucleation. We validate the proposed theory with optimization of closed curves in 2D and surfaces in 3D to lend insights into limitations of current methods and enable improved applications such as image vectorization, vector-graphics generation from text prompts, single-image reconstruction of shape ambigrams and multi-view 3D reconstruction.

Research in natural language processing has demonstrated that the quality of generations from trained autoregressive language models is significantly influenced by the used sampling strategy. In this study, we investigate the impact of different sampling techniques on musical qualities such as diversity and structure. To accomplish this, we train a high-capacity transformer model on a vast collection of highly-structured Irish folk melodies and analyze the musical qualities of the samples generated using distribution truncation sampling techniques. Specifically, we use nucleus sampling, the recently proposed "typical sampling", and conventional ancestral sampling. We evaluate the effect of these sampling strategies in two scenarios: optimal circumstances with a well-calibrated model and suboptimal circumstances where we systematically degrade the model's performance. We assess the generated samples using objective and subjective evaluations. We discover that probability truncation techniques may restrict diversity and structural patterns in optimal circumstances, but may also produce more musical samples in suboptimal circumstances.

Single-particle traces of the diffusive motion of molecules, cells, or animals are by-now routinely measured, similar to stochastic records of stock prices or weather data. Deciphering the stochastic mechanism behind the recorded dynamics is vital in understanding the observed systems. Typically, the task is to decipher the exact type of diffusion and/or to determine system parameters. The tools used in this endeavor are currently revolutionized by modern machine-learning techniques. In this Perspective we provide an overview over recently introduced methods in machine-learning for diffusive time series, most notably, those successfully competing in the Anomalous-Diffusion-Challenge. As such methods are often criticized for their lack of interpretability, we focus on means to include uncertainty estimates and feature-based approaches, both improving interpretability and providing concrete insight into the learning process of the machine. We expand the discussion by examining predictions on different out-of-distribution data. We also comment on expected future developments.

A natural way to resolve different points of view and form opinions is through exchanging arguments and knowledge. Facing the vast amount of available information on the internet, people tend to focus on information consistent with their beliefs. Especially when the issue is controversial, information is often selected that does not challenge one's beliefs. To support a fair and unbiased opinion-building process, we propose a chatbot system that engages in a deliberative dialogue with a human. In contrast to persuasive systems, the envisioned chatbot aims to provide a diverse and representative overview - embedded in a conversation with the user. To account for a reflective and unbiased exploration of the topic, we enable the system to intervene if the user is too focused on their pre-existing opinion. Therefore we propose a model to estimate the users' reflective engagement (RUE), defined as their critical thinking and open-mindedness. We report on a user study with 58 participants to test our model and the effect of the intervention mechanism, discuss the implications of the results, and present perspectives for future work. The results show a significant effect on both user reflection and total user focus, proving our proposed approach's validity.

Graph neural networks (GNNs) have been demonstrated to be a powerful algorithmic model in broad application fields for their effectiveness in learning over graphs. To scale GNN training up for large-scale and ever-growing graphs, the most promising solution is distributed training which distributes the workload of training across multiple computing nodes. However, the workflows, computational patterns, communication patterns, and optimization techniques of distributed GNN training remain preliminarily understood. In this paper, we provide a comprehensive survey of distributed GNN training by investigating various optimization techniques used in distributed GNN training. First, distributed GNN training is classified into several categories according to their workflows. In addition, their computational patterns and communication patterns, as well as the optimization techniques proposed by recent work are introduced. Second, the software frameworks and hardware platforms of distributed GNN training are also introduced for a deeper understanding. Third, distributed GNN training is compared with distributed training of deep neural networks, emphasizing the uniqueness of distributed GNN training. Finally, interesting issues and opportunities in this field are discussed.

The existence of representative datasets is a prerequisite of many successful artificial intelligence and machine learning models. However, the subsequent application of these models often involves scenarios that are inadequately represented in the data used for training. The reasons for this are manifold and range from time and cost constraints to ethical considerations. As a consequence, the reliable use of these models, especially in safety-critical applications, is a huge challenge. Leveraging additional, already existing sources of knowledge is key to overcome the limitations of purely data-driven approaches, and eventually to increase the generalization capability of these models. Furthermore, predictions that conform with knowledge are crucial for making trustworthy and safe decisions even in underrepresented scenarios. This work provides an overview of existing techniques and methods in the literature that combine data-based models with existing knowledge. The identified approaches are structured according to the categories integration, extraction and conformity. Special attention is given to applications in the field of autonomous driving.

We consider the problem of explaining the predictions of graph neural networks (GNNs), which otherwise are considered as black boxes. Existing methods invariably focus on explaining the importance of graph nodes or edges but ignore the substructures of graphs, which are more intuitive and human-intelligible. In this work, we propose a novel method, known as SubgraphX, to explain GNNs by identifying important subgraphs. Given a trained GNN model and an input graph, our SubgraphX explains its predictions by efficiently exploring different subgraphs with Monte Carlo tree search. To make the tree search more effective, we propose to use Shapley values as a measure of subgraph importance, which can also capture the interactions among different subgraphs. To expedite computations, we propose efficient approximation schemes to compute Shapley values for graph data. Our work represents the first attempt to explain GNNs via identifying subgraphs explicitly and directly. Experimental results show that our SubgraphX achieves significantly improved explanations, while keeping computations at a reasonable level.

We propose a novel approach to multimodal sentiment analysis using deep neural networks combining visual analysis and natural language processing. Our goal is different than the standard sentiment analysis goal of predicting whether a sentence expresses positive or negative sentiment; instead, we aim to infer the latent emotional state of the user. Thus, we focus on predicting the emotion word tags attached by users to their Tumblr posts, treating these as "self-reported emotions." We demonstrate that our multimodal model combining both text and image features outperforms separate models based solely on either images or text. Our model's results are interpretable, automatically yielding sensible word lists associated with emotions. We explore the structure of emotions implied by our model and compare it to what has been posited in the psychology literature, and validate our model on a set of images that have been used in psychology studies. Finally, our work also provides a useful tool for the growing academic study of images - both photographs and memes - on social networks.

北京阿比特科技有限公司