The current Internet lacks a bandwidth-reservation infrastructure that enables fine-grained inter-domain reservations for end hosts. This is hindering the provisioning of quality-of-service guarantees for real-time applications like video calls and gaming, cloud-based systems, financial transactions, telesurgery, and other remote applications that benefit from reliable communication. This paper introduces Hummingbird, a novel lightweight inter-domain bandwidth-reservation system that addresses several shortcomings of previous designs. Hummingbird supports flexible and composable reservations and enables end-to-end guarantees without requiring autonomous systems to manage reservations for their endhosts. Previous systems tied reservations to autonomous-system numbers or network addresses, which limits the flexibility of reservations. In contrast, our system decouples reservations from network identities and, as a result, the control plane from the data plane. This design choice facilitates multiple co-existing control-plane mechanisms and enables innovative approaches, such as a control plane based on blockchain smart contracts that offers tradeable bandwidth-reservation assets and end-to-end guarantees. The data-plane design ensures simplicity for efficient processing on border routers, which streamlines implementation, deployment, and traffic policing while maintaining robust security properties.
Text-driven diffusion models have exhibited impressive generative capabilities, enabling various image editing tasks. In this paper, we propose TF-ICON, a novel Training-Free Image COmpositioN framework that harnesses the power of text-driven diffusion models for cross-domain image-guided composition. This task aims to seamlessly integrate user-provided objects into a specific visual context. Current diffusion-based methods often involve costly instance-based optimization or finetuning of pretrained models on customized datasets, which can potentially undermine their rich prior. In contrast, TF-ICON can leverage off-the-shelf diffusion models to perform cross-domain image-guided composition without requiring additional training, finetuning, or optimization. Moreover, we introduce the exceptional prompt, which contains no information, to facilitate text-driven diffusion models in accurately inverting real images into latent representations, forming the basis for compositing. Our experiments show that equipping Stable Diffusion with the exceptional prompt outperforms state-of-the-art inversion methods on various datasets (CelebA-HQ, COCO, and ImageNet), and that TF-ICON surpasses prior baselines in versatile visual domains. Code is available at //github.com/Shilin-LU/TF-ICON
Data silos create barriers in accessing and utilizing data dispersed over networks. Directly sharing data easily suffers from the long downloading time, the single point failure and the untraceable data usage. In this paper, we present Minerva, a peer-to-peer cross-cluster data query system based on InterPlanetary File System (IPFS). Minerva makes use of the distributed Hash table (DHT) lookup to pinpoint the locations that store content chunks. We theoretically model the DHT query delay and introduce the fat Merkle tree structure as well as the DHT caching to reduce it. We design the query plan for read and write operations on top of Apache Drill that enables the collaborative query with decentralized workers. We conduct comprehensive experiments on Minerva, and the results show that Minerva achieves up to $2.08 \times$ query performance acceleration compared to the original IPFS data query, and could complete data analysis queries on the Internet-like environments within an average latency of $0.615$ second. With collaborative query, Minerva could perform up to $1.39 \times$ performance acceleration than centralized query with raw data shipment.
Recent years have witnessed a widespread adoption of containers. While containers simplify and accelerate application development, existing container network technologies either incur significant overhead, which hurts performance for distributed applications, or lose flexibility or compatibility, which hinders the widespread deployment in production. We design and implement ONCache (\textbf{O}verlay \textbf{N}etwork \textbf{Cache}), a cache-based container overlay network, to eliminate the overhead while keeping flexibility and compatibility. We carefully analyze the difference between an overlay network and a host network, and find that an overlay network incurs extra packet processing, including encapsulating, intra-host routing, namespace traversing and packet filtering. Fortunately, the extra processing exhibits an \emph{invariance property}, e.g., most packets of the same flow have the same processing results. This property motivates us to cache the extra processing results. With the proposed cache, ONCache significantly reduces the extra overhead while maintaining the same flexibility and compatibility as standard overlay networks. We implement ONCache using eBPF with only 524 lines of code, and deploy ONCache as a plugin of Antrea. With ONCache, container communication achieves similar performance as host communication. Compared to the standard overlay network, ONCache improves the throughput and request-response transaction rate by 12\% and 36\% for TCP (20\% and 34\% for UDP), while significant reduces per-packet CPU overhead. Many distributed applications also benefit from ONCache.
In real-time video communication, retransmitting lost packets over high-latency networks is not viable due to strict latency requirements. To counter packet losses without retransmission, two primary strategies are employed -- encoder-based forward error correction (FEC) and decoder-based error concealment. The former encodes data with redundancy before transmission, yet determining the optimal redundancy level in advance proves challenging. The latter reconstructs video from partially received frames, but dividing a frame into independently coded partitions inherently compromises compression efficiency, and the lost information cannot be effectively recovered by the decoder without adapting the encoder. We present a loss-resilient real-time video system called GRACE, which preserves the user's quality of experience (QoE) across a wide range of packet losses through a new neural video codec. Central to GRACE's enhanced loss resilience is its joint training of the neural encoder and decoder under a spectrum of simulated packet losses. In lossless scenarios, GRACE achieves video quality on par with conventional codecs (e.g., H.265). As the loss rate escalates, GRACE exhibits a more graceful, less pronounced decline in quality, consistently outperforming other loss-resilient schemes. Through extensive evaluation on various videos and real network traces, we demonstrate that GRACE reduces undecodable frames by 95% and stall duration by 90% compared with FEC, while markedly boosting video quality over error concealment methods. In a user study with 240 crowdsourced participants and 960 subjective ratings, GRACE registers a 38% higher mean opinion score (MOS) than other baselines.
The multivariate Hawkes process (MHP) is widely used for analyzing data streams that interact with each other, where events generate new events within their own dimension (via self-excitation) or across different dimensions (via cross-excitation). However, in certain applications, the timestamps of individual events in some dimensions are unobservable, and only event counts within intervals are known, referred to as partially interval-censored data. The MHP is unsuitable for handling such data since its estimation requires event timestamps. In this study, we introduce the Partial Mean Behavior Poisson (PMBP) process, a novel point process which shares parameter equivalence with the MHP and can effectively model both timestamped and interval-censored data. We demonstrate the capabilities of the PMBP process using synthetic and real-world datasets. Firstly, we illustrate that the PMBP process can approximate MHP parameters and recover the spectral radius using synthetic event histories. Next, we assess the performance of the PMBP process in predicting YouTube popularity and find that it surpasses state-of-the-art methods. Lastly, we leverage the PMBP process to gain qualitative insights from a dataset comprising daily COVID-19 case counts from multiple countries and COVID-19-related news articles. By clustering the PMBP-modeled countries, we unveil hidden interaction patterns between occurrences of COVID-19 cases and news reporting.
Transformers have demonstrated their success in various domains and tasks. However, Transformers struggle with long input sequences due to their limited capacity. While one solution is to increase input length, endlessly stretching the length is unrealistic. Furthermore, humans selectively remember and use only relevant information from inputs, unlike Transformers which process all raw data from start to end. We introduce Memoria, a general memory network that applies Hebbian theory which is a major theory explaining human memory formulation to enhance long-term dependencies in neural networks. Memoria stores and retrieves information called engram at multiple memory levels of working memory, short-term memory, and long-term memory, using connection weights that change according to Hebb's rule. Through experiments with popular Transformer-based models like BERT and GPT, we present that Memoria significantly improves the ability to consider long-term dependencies in various tasks. Results show that Memoria outperformed existing methodologies in sorting and language modeling, and long text classification.
In many visual systems, visual tracking often bases on RGB image sequences, in which some targets are invalid in low-light conditions, and tracking performance is thus affected significantly. Introducing other modalities such as depth and infrared data is an effective way to handle imaging limitations of individual sources, but multi-modal imaging platforms usually require elaborate designs and cannot be applied in many real-world applications at present. Near-infrared (NIR) imaging becomes an essential part of many surveillance cameras, whose imaging is switchable between RGB and NIR based on the light intensity. These two modalities are heterogeneous with very different visual properties and thus bring big challenges for visual tracking. However, existing works have not studied this challenging problem. In this work, we address the cross-modal object tracking problem and contribute a new video dataset, including 654 cross-modal image sequences with over 481K frames in total, and the average video length is more than 735 frames. To promote the research and development of cross-modal object tracking, we propose a new algorithm, which learns the modality-aware target representation to mitigate the appearance gap between RGB and NIR modalities in the tracking process. It is plug-and-play and could thus be flexibly embedded into different tracking frameworks. Extensive experiments on the dataset are conducted, and we demonstrate the effectiveness of the proposed algorithm in two representative tracking frameworks against 17 state-of-the-art tracking methods. We will release the dataset for free academic usage, dataset download link and code will be released soon.
Image-to-image translation (I2I) aims to transfer images from a source domain to a target domain while preserving the content representations. I2I has drawn increasing attention and made tremendous progress in recent years because of its wide range of applications in many computer vision and image processing problems, such as image synthesis, segmentation, style transfer, restoration, and pose estimation. In this paper, we provide an overview of the I2I works developed in recent years. We will analyze the key techniques of the existing I2I works and clarify the main progress the community has made. Additionally, we will elaborate on the effect of I2I on the research and industry community and point out remaining challenges in related fields.
Conventional unsupervised multi-source domain adaptation (UMDA) methods assume all source domains can be accessed directly. This neglects the privacy-preserving policy, that is, all the data and computations must be kept decentralized. There exists three problems in this scenario: (1) Minimizing the domain distance requires the pairwise calculation of the data from source and target domains, which is not accessible. (2) The communication cost and privacy security limit the application of UMDA methods (e.g., the domain adversarial training). (3) Since users have no authority to check the data quality, the irrelevant or malicious source domains are more likely to appear, which causes negative transfer. In this study, we propose a privacy-preserving UMDA paradigm named Knowledge Distillation based Decentralized Domain Adaptation (KD3A), which performs domain adaptation through the knowledge distillation on models from different source domains. KD3A solves the above problems with three components: (1) A multi-source knowledge distillation method named Knowledge Vote to learn high-quality domain consensus knowledge. (2) A dynamic weighting strategy named Consensus Focus to identify both the malicious and irrelevant domains. (3) A decentralized optimization strategy for domain distance named BatchNorm MMD. The extensive experiments on DomainNet demonstrate that KD3A is robust to the negative transfer and brings a 100x reduction of communication cost compared with other decentralized UMDA methods. Moreover, our KD3A significantly outperforms state-of-the-art UMDA approaches.
Recurrent neural nets (RNN) and convolutional neural nets (CNN) are widely used on NLP tasks to capture the long-term and local dependencies, respectively. Attention mechanisms have recently attracted enormous interest due to their highly parallelizable computation, significantly less training time, and flexibility in modeling dependencies. We propose a novel attention mechanism in which the attention between elements from input sequence(s) is directional and multi-dimensional (i.e., feature-wise). A light-weight neural net, "Directional Self-Attention Network (DiSAN)", is then proposed to learn sentence embedding, based solely on the proposed attention without any RNN/CNN structure. DiSAN is only composed of a directional self-attention with temporal order encoded, followed by a multi-dimensional attention that compresses the sequence into a vector representation. Despite its simple form, DiSAN outperforms complicated RNN models on both prediction quality and time efficiency. It achieves the best test accuracy among all sentence encoding methods and improves the most recent best result by 1.02% on the Stanford Natural Language Inference (SNLI) dataset, and shows state-of-the-art test accuracy on the Stanford Sentiment Treebank (SST), Multi-Genre natural language inference (MultiNLI), Sentences Involving Compositional Knowledge (SICK), Customer Review, MPQA, TREC question-type classification and Subjectivity (SUBJ) datasets.