亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Drowsy driving represents a major contributor to traffic accidents, and the implementation of driver drowsy driving detection systems has been proven to significantly reduce the occurrence of such accidents. Despite the development of numerous drowsy driving detection algorithms, many of them impose specific prerequisites such as the availability of complete facial images, optimal lighting conditions, and the use of RGB images. In our study, we introduce a novel approach called the Multi-Attention Fusion Drowsy Driving Detection Model (MAF). MAF is aimed at significantly enhancing classification performance, especially in scenarios involving partial facial occlusion and low lighting conditions. It accomplishes this by capitalizing on the local feature extraction capabilities provided by multi-attention fusion, thereby enhancing the algorithm's overall robustness. To enhance our dataset, we collected real-world data that includes both occluded and unoccluded faces captured under nighttime and daytime lighting conditions. We conducted a comprehensive series of experiments using both publicly available datasets and our self-built data. The results of these experiments demonstrate that our proposed model achieves an impressive driver drowsiness detection accuracy of 96.8%.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · 多變量回歸 · 設計 · 歐幾里得距離 · 規范化的 ·
2024 年 2 月 14 日

We introduce a multivariate local-linear estimator for multivariate regression discontinuity designs in which treatment is assigned by crossing a boundary in the space of running variables. The dominant approach uses the Euclidean distance from a boundary point as the scalar running variable; hence, multivariate designs are handled as uni-variate designs. However, the distance running variable is incompatible with the assumption for asymptotic validity. We handle multivariate designs as multivariate. In this study, we develop a novel asymptotic normality for multivariate local-polynomial estimators. Our estimator is asymptotically valid and can capture heterogeneous treatment effects over the boundary. We demonstrate the effectiveness of our estimator through numerical simulations. Our empirical illustration of a Colombian scholarship study reveals a richer heterogeneity (including its absence) of the treatment effect that is hidden in the original estimates.

Backdoor attacks are commonly executed by contaminating training data, such that a trigger can activate predetermined harmful effects during the test phase. In this work, we present AnyDoor, a test-time backdoor attack against multimodal large language models (MLLMs), which involves injecting the backdoor into the textual modality using adversarial test images (sharing the same universal perturbation), without requiring access to or modification of the training data. AnyDoor employs similar techniques used in universal adversarial attacks, but distinguishes itself by its ability to decouple the timing of setup and activation of harmful effects. In our experiments, we validate the effectiveness of AnyDoor against popular MLLMs such as LLaVA-1.5, MiniGPT-4, InstructBLIP, and BLIP-2, as well as provide comprehensive ablation studies. Notably, because the backdoor is injected by a universal perturbation, AnyDoor can dynamically change its backdoor trigger prompts/harmful effects, exposing a new challenge for defending against backdoor attacks. Our project page is available at //sail-sg.github.io/AnyDoor/.

Active object reconstruction using autonomous robots is gaining great interest. A primary goal in this task is to maximize the information of the object to be reconstructed, given limited on-board resources. Previous view planning methods exhibit inefficiency since they rely on an iterative paradigm based on explicit representations, consisting of (1) planning a path to the next-best view only; and (2) requiring a considerable number of less-gain views in terms of surface coverage. To address these limitations, we propose to integrate implicit representations into the One-Shot View Planning (OSVP). The key idea behind our approach is to use implicit representations to obtain the small missing surface areas instead of observing them with extra views. Therefore, we design a deep neural network, named OSVP, to directly predict a set of views given a dense point cloud refined from an initial sparse observation. To train our OSVP network, we generate supervision labels using dense point clouds refined by implicit representations and set covering optimization problems. Simulated experiments show that our method achieves sufficient reconstruction quality, outperforming several baselines under limited view and movement budgets. We further demonstrate the applicability of our approach in a real-world object reconstruction scenario.

In recent years, driven by the need for safer and more autonomous transport systems, the automotive industry has shifted toward integrating a growing number of Advanced Driver Assistance Systems (ADAS). Among the array of sensors employed for object recognition tasks, radar sensors have emerged as a formidable contender due to their abilities in adverse weather conditions or low-light scenarios and their robustness in maintaining consistent performance across diverse environments. However, the small size of radar datasets and the complexity of the labelling of those data limit the performance of radar object detectors. Driven by the promising results of self-supervised learning in computer vision, this paper presents RiCL, an instance contrastive learning framework to pre-train radar object detectors. We propose to exploit the detection from the radar and the temporal information to pre-train the radar object detection model in a self-supervised way using contrastive learning. We aim to pre-train an object detector's backbone, head and neck to learn with fewer data. Experiments on the CARRADA and the RADDet datasets show the effectiveness of our approach in learning generic representations of objects in range-Doppler maps. Notably, our pre-training strategy allows us to use only 20% of the labelled data to reach a similar [email protected] than a supervised approach using the whole training set.

In autonomous driving, predicting the behavior (turning left, stopping, etc.) of target vehicles is crucial for the self-driving vehicle to make safe decisions and avoid accidents. Existing deep learning-based methods have shown excellent and accurate performance, but the black-box nature makes it untrustworthy to apply them in practical use. In this work, we explore the interpretability of behavior prediction of target vehicles by an Episodic Memory implanted Neural Decision Tree (abbrev. eMem-NDT). The structure of eMem-NDT is constructed by hierarchically clustering the text embedding of vehicle behavior descriptions. eMem-NDT is a neural-backed part of a pre-trained deep learning model by changing the soft-max layer of the deep model to eMem-NDT, for grouping and aligning the memory prototypes of the historical vehicle behavior features in training data on a neural decision tree. Each leaf node of eMem-NDT is modeled by a neural network for aligning the behavior memory prototypes. By eMem-NDT, we infer each instance in behavior prediction of vehicles by bottom-up Memory Prototype Matching (MPM) (searching the appropriate leaf node and the links to the root node) and top-down Leaf Link Aggregation (LLA) (obtaining the probability of future behaviors of vehicles for certain instances). We validate eMem-NDT on BLVD and LOKI datasets, and the results show that our model can obtain a superior performance to other methods with clear explainability. The code is available at //github.com/JWFangit/eMem-NDT.

In task-oriented dialogue, a system often needs to follow a sequence of actions, called a workflow, that complies with a set of guidelines in order to complete a task. In this paper, we propose the novel problem of multi-step workflow action prediction, in which the system predicts multiple future workflow actions. Accurate prediction of multiple steps allows for multi-turn automation, which can free up time to focus on more complex tasks. We propose three modeling approaches that are simple to implement yet lead to more action automation: 1) fine-tuning on a training dataset, 2) few-shot in-context learning leveraging retrieval and large language model prompting, and 3) zero-shot graph traversal, which aggregates historical action sequences into a graph for prediction. We show that multi-step action prediction produces features that improve accuracy on downstream dialogue tasks like predicting task success, and can increase automation of steps by 20% without requiring as much feedback from a human overseeing the system.

Learning a universal policy across different robot morphologies can significantly improve learning efficiency and enable zero-shot generalization to unseen morphologies. However, learning a highly performant universal policy requires sophisticated architectures like transformers (TF) that have larger memory and computational cost than simpler multi-layer perceptrons (MLP). To achieve both good performance like TF and high efficiency like MLP at inference time, we propose HyperDistill, which consists of: (1) A morphology-conditioned hypernetwork (HN) that generates robot-wise MLP policies, and (2) A policy distillation approach that is essential for successful training. We show that on UNIMAL, a benchmark with hundreds of diverse morphologies, HyperDistill performs as well as a universal TF teacher policy on both training and unseen test robots, but reduces model size by 6-14 times, and computational cost by 67-160 times in different environments. Our analysis attributes the efficiency advantage of HyperDistill at inference time to knowledge decoupling, i.e., the ability to decouple inter-task and intra-task knowledge, a general principle that could also be applied to improve inference efficiency in other domains.

A reliable and accurate knowledge of the ridership in public transportation networks is crucial for public transport operators and public authorities to be aware of their network's use and optimize transport offering. Several techniques to estimate ridership exist nowadays, some of them in an automated manner. Among them, Automatic Passenger Counting (APC) systems detect passengers entering and leaving the vehicle at each station of its course. However, data resulting from these systems are often noisy or even biased, resulting in under or overestimation of onboard occupancy. In this work, we propose a denoising algorithm for APC data to improve their robustness and ease their analyzes. The proposed approach consists in a constrained integer linear optimization, taking advantage of ticketing data and historical ridership data to further constrain and guide the optimization. The performances are assessed and compared to other denoising methods on several public transportation networks in France, to manual counts available on one of these networks, and on simulated data.

Signalized intersections in arterial roads result in persistent vehicle idling and excess accelerations, contributing to fuel consumption and CO2 emissions. There has thus been a line of work studying eco-driving control strategies to reduce fuel consumption and emission levels at intersections. However, methods to devise effective control strategies across a variety of traffic settings remain elusive. In this paper, we propose a reinforcement learning (RL) approach to learn effective eco-driving control strategies. We analyze the potential impact of a learned strategy on fuel consumption, CO2 emission, and travel time and compare with naturalistic driving and model-based baselines. We further demonstrate the generalizability of the learned policies under mixed traffic scenarios. Simulation results indicate that scenarios with 100% penetration of connected autonomous vehicles (CAV) may yield as high as 18% reduction in fuel consumption and 25% reduction in CO2 emission levels while even improving travel speed by 20%. Furthermore, results indicate that even 25% CAV penetration can bring at least 50% of the total fuel and emission reduction benefits.

Multi-relation Question Answering is a challenging task, due to the requirement of elaborated analysis on questions and reasoning over multiple fact triples in knowledge base. In this paper, we present a novel model called Interpretable Reasoning Network that employs an interpretable, hop-by-hop reasoning process for question answering. The model dynamically decides which part of an input question should be analyzed at each hop; predicts a relation that corresponds to the current parsed results; utilizes the predicted relation to update the question representation and the state of the reasoning process; and then drives the next-hop reasoning. Experiments show that our model yields state-of-the-art results on two datasets. More interestingly, the model can offer traceable and observable intermediate predictions for reasoning analysis and failure diagnosis.

北京阿比特科技有限公司