亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this article we propose an inverse analysis algorithm to find the best fit of multiple material parameters in different coupled multi-physics biofilm models. We use a nonlinear continuum mechanical approach to model biofilm deformation that occurs in flow cell experiments. The objective function is based on a simple geometrical measurement of the distance of the fluid biofilm interface between model and experiments. A Levenberg-Marquardt algorithm based on finite difference approximation is used as an optimizer. The proposed method uses a moderate to low amount of model evaluations. For a first presentation and evaluation the algorithm is applied and tested on different numerical examples based on generated numerical results and the addition of Gaussian noise. Achieved numerical results show that the proposed method serves well for different physical effects investigated and numerical approaches chosen for the model. Presented examples show the inverse analysis for multiple parameters in biofilm models including fluid-solid interaction effects, poroelasticity, heterogeneous material properties and growth.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · 可理解性 · 統計量 · 極大 · 稀疏 ·
2021 年 12 月 3 日

Rare variants are hypothesized to be largely responsible for heritability and susceptibility to disease in humans. So rare variants association studies hold promise for understanding disease. Conversely though, the rareness of the variants poses practical challenges; since these variants are present in few individuals, it can be difficult to develop data-collection and statistical methods that effectively leverage their sparse information. In this work, we develop a novel Bayesian nonparametric model to capture how design choices in rare variants association studies can impact their usefulness. We then show how to use our model to guide design choices under a fixed experimental budget in practice. In particular, we provide a practical workflow and illustrative experiments on simulated data.

Efficient optimization of topology and raster angle has shown unprecedented enhancements in the mechanical properties of 3D printed thermoplastic polymers. Topology optimization helps reduce the waste of raw material in the fabrication of 3D printed parts, thus decreasing production costs associated with manufacturing lighter structures. Fiber orientation plays an important role in increasing the stiffness of a structure. This paper develops and tests a new method for handling stress constraints in topology and fiber orientation optimization of 3D printed orthotropic structures. The stress constraints are coupled with an objective function that maximizes stiffness. This is accomplished by using the modified solid isotropic material with penalization method with the method of moving asymptotes as the optimizer. Each element has a fictitious density and an angle as the main design variables. To reduce the number of stress constraints and thus the computational cost, a new clustering strategy is employed in which the highest stresses in the principal material coordinates are grouped separately into two clusters using an adjusted $P$-norm. A detailed description of the formulation and sensitivity analysis is discussed. While we present an analysis of 2D structures in the numerical examples section, the method can also be used for 3D structures, as the formulation is generic. Our results show that this method can produce efficient structures suitable for 3D printing while avoiding stress concentrations.

Recent research investigates the decode-and-forward (DF) relaying for mixed radio frequency (RF) and terahertz (THz) wireless links with zero-boresight pointing errors. In this letter, we analyze the performance of a fixed-gain amplify-and-forward (AF) relaying for the RF-THz link to interface the access network on the RF technology with wireless THz transmissions. We develop probability density function (PDF) and cumulative distribution function (CDF) of the end-to-end SNR for the relay-assisted system in terms of bivariate Fox's H function considering $\alpha$-$\mu$ fading for the THz system with non-zero boresight pointing errors and $\alpha$-$\kappa$-$\mu$ shadowed ($\alpha$-KMS) fading model for the RF link. Using the derived PDF and CDF, we present exact analytical expressions of the outage probability, average bit-error-rate (BER), and ergodic capacity of the considered system. We also analyze the outage probability and average BER asymptotically for a better insight into the system behavior at high SNR. We use simulations to compare the performance of the AF relaying having a semi-blind gain factor with the recently proposed DF relaying for THz-RF transmissions.

We consider a randomized controlled trial between two groups. The objective is to identify a population with characteristics such that the test therapy is more effective than the control therapy. Such a population is called a subgroup. This identification can be made by estimating the treatment effect and identifying interactions between treatments and covariates. To date, many methods have been proposed to identify subgroups for a single outcome. There are also multiple outcomes, but they are difficult to interpret and cannot be applied to outcomes other than continuous values. In this paper, we propose a multivariate regression method that introduces latent variables to estimate the treatment effect on multiple outcomes simultaneously. The proposed method introduces latent variables and adds Lasso sparsity constraints to the estimated loadings to facilitate the interpretation of the relationship between outcomes and covariates. The framework of the generalized linear model makes it applicable to various types of outcomes. Interpretation of subgroups is made by visualizing treatment effects and latent variables. This allows us to identify subgroups with characteristics that make the test therapy more effective for multiple outcomes. Simulation and real data examples demonstrate the effectiveness of the proposed method.

Recently, RobustBench (Croce et al. 2020) has become a widely recognized benchmark for the adversarial robustness of image classification networks. In its most commonly reported sub-task, RobustBench evaluates and ranks the adversarial robustness of trained neural networks on CIFAR10 under AutoAttack (Croce and Hein 2020b) with l-inf perturbations limited to eps = 8/255. With leading scores of the currently best performing models of around 60% of the baseline, it is fair to characterize this benchmark to be quite challenging. Despite its general acceptance in recent literature, we aim to foster discussion about the suitability of RobustBench as a key indicator for robustness which could be generalized to practical applications. Our line of argumentation against this is two-fold and supported by excessive experiments presented in this paper: We argue that I) the alternation of data by AutoAttack with l-inf, eps = 8/255 is unrealistically strong, resulting in close to perfect detection rates of adversarial samples even by simple detection algorithms and human observers. We also show that other attack methods are much harder to detect while achieving similar success rates. II) That results on low-resolution data sets like CIFAR10 do not generalize well to higher resolution images as gradient-based attacks appear to become even more detectable with increasing resolutions.

Research community evaluations in information retrieval, such as NIST's Text REtrieval Conference (TREC), build reusable test collections by pooling document rankings submitted by many teams. Naturally, the quality of the resulting test collection thus greatly depends on the number of participating teams and the quality of their submitted runs. In this work, we investigate: i) how the number of participants, coupled with other factors, affects the quality of a test collection; and ii) whether the quality of a test collection can be inferred prior to collecting relevance judgments from human assessors. Experiments conducted on six TREC collections illustrate how the number of teams interacts with various other factors to influence the resulting quality of test collections. We also show that the reusability of a test collection can be predicted with high accuracy when the same document collection is used for successive years in an evaluation campaign, as is common in TREC.

Transformer-based models are popular for natural language processing (NLP) tasks due to its powerful capacity. As the core component, self-attention module has aroused widespread interests. Attention map visualization of a pre-trained model is one direct method for understanding self-attention mechanism and some common patterns are observed in visualization. Based on these patterns, a series of efficient transformers are proposed with corresponding sparse attention masks. Besides above empirical results, universal approximability of Transformer-based models is also discovered from a theoretical perspective. However, above understanding and analysis of self-attention is based on a pre-trained model. To rethink the importance analysis in self-attention, we delve into dynamics of attention matrix importance during pre-training. One of surprising results is that the diagonal elements in the attention map are the most unimportant compared with other attention positions and we also provide a proof to show these elements can be removed without damaging the model performance. Furthermore, we propose a Differentiable Attention Mask (DAM) algorithm, which can be also applied in guidance of SparseBERT design further. The extensive experiments verify our interesting findings and illustrate the effect of our proposed algorithm.

This paper focuses on the expected difference in borrower's repayment when there is a change in the lender's credit decisions. Classical estimators overlook the confounding effects and hence the estimation error can be magnificent. As such, we propose another approach to construct the estimators such that the error can be greatly reduced. The proposed estimators are shown to be unbiased, consistent, and robust through a combination of theoretical analysis and numerical testing. Moreover, we compare the power of estimating the causal quantities between the classical estimators and the proposed estimators. The comparison is tested across a wide range of models, including linear regression models, tree-based models, and neural network-based models, under different simulated datasets that exhibit different levels of causality, different degrees of nonlinearity, and different distributional properties. Most importantly, we apply our approaches to a large observational dataset provided by a global technology firm that operates in both the e-commerce and the lending business. We find that the relative reduction of estimation error is strikingly substantial if the causal effects are accounted for correctly.

As we seek to deploy machine learning models beyond virtual and controlled domains, it is critical to analyze not only the accuracy or the fact that it works most of the time, but if such a model is truly robust and reliable. This paper studies strategies to implement adversary robustly trained algorithms towards guaranteeing safety in machine learning algorithms. We provide a taxonomy to classify adversarial attacks and defenses, formulate the Robust Optimization problem in a min-max setting and divide it into 3 subcategories, namely: Adversarial (re)Training, Regularization Approach, and Certified Defenses. We survey the most recent and important results in adversarial example generation, defense mechanisms with adversarial (re)Training as their main defense against perturbations. We also survey mothods that add regularization terms that change the behavior of the gradient, making it harder for attackers to achieve their objective. Alternatively, we've surveyed methods which formally derive certificates of robustness by exactly solving the optimization problem or by approximations using upper or lower bounds. In addition, we discuss the challenges faced by most of the recent algorithms presenting future research perspectives.

This paper addresses the problem of formally verifying desirable properties of neural networks, i.e., obtaining provable guarantees that neural networks satisfy specifications relating their inputs and outputs (robustness to bounded norm adversarial perturbations, for example). Most previous work on this topic was limited in its applicability by the size of the network, network architecture and the complexity of properties to be verified. In contrast, our framework applies to a general class of activation functions and specifications on neural network inputs and outputs. We formulate verification as an optimization problem (seeking to find the largest violation of the specification) and solve a Lagrangian relaxation of the optimization problem to obtain an upper bound on the worst case violation of the specification being verified. Our approach is anytime i.e. it can be stopped at any time and a valid bound on the maximum violation can be obtained. We develop specialized verification algorithms with provable tightness guarantees under special assumptions and demonstrate the practical significance of our general verification approach on a variety of verification tasks.

北京阿比特科技有限公司