亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Communication strongly influences attitudes on climate change. Within sponsored communication, high spend and high reach advertising dominates. In the advertising ecosystem we can distinguish actors with adversarial stances: organizations with contrarian or advocacy communication goals, who direct the advertisement delivery algorithm to launch ads in different destinations by specifying targets and campaign objectives. We present an observational (N=275,632) and a controlled (N=650) study which collectively indicate that the advertising delivery algorithm could itself be an actor, asserting statistically significant influence over advertisement destinations, characterized by U.S. state, gender type, or age range. This algorithmic behaviour may not entirely be understood by the advertising platform (and its creators). These findings have implications for climate communications and misinformation research, revealing that targeting intentions are not always fulfilled as requested and that delivery itself could be manipulated.

相關內容

 Facebook 是一個社交網絡服務網站,于 2004 年 2 月 4 日上線。從 2006 年 9 月到 2007 年 9 月間,該網站在全美網站中的排名由第 60 名上升至第 7 名。同時 Facebook 是美國排名第一的照片分享站點。 2012年 2 月 1 日,Facebook向美國證券交易委員會提交集資規模為 50 億美元的上市申請。

Spiking Neural Network (SNN) as a brain-inspired strategy receives lots of attention because of the high-sparsity and low-power properties derived from its inherent spiking information state. To further improve the efficiency of SNN, some works declare that the Lottery Tickets (LTs) Hypothesis, which indicates that the Artificial Neural Network (ANN) contains a subnetwork without sacrificing the performance of the original network, also exists in SNN. However, the spiking information handled by SNN has a natural similarity and affinity with binarization in sparsification. Therefore, to further explore SNN efficiency, this paper focuses on (1) the presence or absence of LTs in the binary SNN, and (2) whether the spiking mechanism is a superior strategy in terms of handling binary information compared to simple model binarization. To certify these consumptions, a sparse training method is proposed to find Binary Weights Spiking Lottery Tickets (BinW-SLT) under different network structures. Through comprehensive evaluations, we show that BinW-SLT could attain up to +5.86% and +3.17% improvement on CIFAR-10 and CIFAR-100 compared with binary LTs, as well as achieve 1.86x and 8.92x energy saving compared with full-precision SNN and ANN.

We propose a Holistic Return on Ethics (HROE) framework for understanding the return on organizational investments in artificial intelligence (AI) ethics efforts. This framework is useful for organizations that wish to quantify the return for their investment decisions. The framework identifies the direct economic returns of such investments, the indirect paths to return through intangibles associated with organizational reputation, and real options associated with capabilities. The holistic framework ultimately provides organizations with the competency to employ and justify AI ethics investments.

Image acquisition conditions and environments can significantly affect high-level tasks in computer vision, and the performance of most computer vision algorithms will be limited when trained on distortion-free datasets. Even with updates in hardware such as sensors and deep learning methods, it will still not work in the face of variable conditions in real-world applications. In this paper, we apply the object detector YOLOv7 to detect distorted images from the dataset CDCOCO. Through carefully designed optimizations including data enhancement, detection box ensemble, denoiser ensemble, super-resolution models, and transfer learning, our model achieves excellent performance on the CDCOCO test set. Our denoising detection model can denoise and repair distorted images, making the model useful in a variety of real-world scenarios and environments.

Human speech can be characterized by different components, including semantic content, speaker identity and prosodic information. Significant progress has been made in disentangling representations for semantic content and speaker identity in Automatic Speech Recognition (ASR) and speaker verification tasks respectively. However, it is still an open challenging research question to extract prosodic information because of the intrinsic association of different attributes, such as timbre and rhythm, and because of the need for supervised training schemes to achieve robust large-scale and speaker-independent ASR. The aim of this paper is to address the disentanglement of emotional prosody from speech based on unsupervised reconstruction. Specifically, we identify, design, implement and integrate three crucial components in our proposed speech reconstruction model Prosody2Vec: (1) a unit encoder that transforms speech signals into discrete units for semantic content, (2) a pretrained speaker verification model to generate speaker identity embeddings, and (3) a trainable prosody encoder to learn prosody representations. We first pretrain the Prosody2Vec representations on unlabelled emotional speech corpora, then fine-tune the model on specific datasets to perform Speech Emotion Recognition (SER) and Emotional Voice Conversion (EVC) tasks. Both objective (weighted and unweighted accuracies) and subjective (mean opinion score) evaluations on the EVC task suggest that Prosody2Vec effectively captures general prosodic features that can be smoothly transferred to other emotional speech. In addition, our SER experiments on the IEMOCAP dataset reveal that the prosody features learned by Prosody2Vec are complementary and beneficial for the performance of widely used speech pretraining models and surpass the state-of-the-art methods when combining Prosody2Vec with HuBERT representations.

Artificial neural networks are highly successfully trained with backpropagation. For spiking neural networks, however, a similar gradient descent scheme seems prohibitive due to the sudden, disruptive (dis-)appearance of spikes. Here, we demonstrate exact gradient descent learning based on spiking dynamics that change only continuously. These are generated by neuron models whose spikes vanish and appear at the end of a trial, where they do not influence other neurons anymore. This also enables gradient-based spike addition and removal. We apply our learning scheme to induce and continuously move spikes to desired times, in single neurons and recurrent networks. Further, it achieves competitive performance in a benchmark task using deep, initially silent networks. Our results show how non-disruptive learning is possible despite discrete spikes.

Humans use different modalities, such as speech, text, images, videos, etc., to communicate their intent and goals with teammates. For robots to become better assistants, we aim to endow them with the ability to follow instructions and understand tasks specified by their human partners. Most robotic policy learning methods have focused on one single modality of task specification while ignoring the rich cross-modal information. We present MUTEX, a unified approach to policy learning from multimodal task specifications. It trains a transformer-based architecture to facilitate cross-modal reasoning, combining masked modeling and cross-modal matching objectives in a two-stage training procedure. After training, MUTEX can follow a task specification in any of the six learned modalities (video demonstrations, goal images, text goal descriptions, text instructions, speech goal descriptions, and speech instructions) or a combination of them. We systematically evaluate the benefits of MUTEX in a newly designed dataset with 100 tasks in simulation and 50 tasks in the real world, annotated with multiple instances of task specifications in different modalities, and observe improved performance over methods trained specifically for any single modality. More information at //ut-austin-rpl.github.io/MUTEX/

Motion represents one of the major challenges in magnetic resonance imaging (MRI). Since the MR signal is acquired in frequency space, any motion of the imaged object leads to complex artefacts in the reconstructed image in addition to other MR imaging artefacts. Deep learning has been frequently proposed for motion correction at several stages of the reconstruction process. The wide range of MR acquisition sequences, anatomies and pathologies of interest, and motion patterns (rigid vs. deformable and random vs. regular) makes a comprehensive solution unlikely. To facilitate the transfer of ideas between different applications, this review provides a detailed overview of proposed methods for learning-based motion correction in MRI together with their common challenges and potentials. This review identifies differences and synergies in underlying data usage, architectures, training and evaluation strategies. We critically discuss general trends and outline future directions, with the aim to enhance interaction between different application areas and research fields.

Our paper discovers a new trade-off of using regression adjustments (RAs) in causal inference under covariate-adaptive randomizations (CARs). On one hand, RAs can improve the efficiency of causal estimators by incorporating information from covariates that are not used in the randomization. On the other hand, RAs can degrade estimation efficiency due to their estimation errors, which are not asymptotically negligible when the number of regressors is of the same order as the sample size. Ignoring the estimation errors of RAs may result in serious over-rejection of causal inference under the null hypothesis. To address the issue, we develop a unified inference theory for the regression-adjusted average treatment effect (ATE) estimator under CARs. Our theory has two key features: (1) it ensures the exact asymptotic size under the null hypothesis, regardless of whether the number of covariates is fixed or diverges no faster than the sample size; and (2) it guarantees weak efficiency improvement over the ATE estimator without adjustments.

Graph Neural Networks (GNNs) have recently become increasingly popular due to their ability to learn complex systems of relations or interactions arising in a broad spectrum of problems ranging from biology and particle physics to social networks and recommendation systems. Despite the plethora of different models for deep learning on graphs, few approaches have been proposed thus far for dealing with graphs that present some sort of dynamic nature (e.g. evolving features or connectivity over time). In this paper, we present Temporal Graph Networks (TGNs), a generic, efficient framework for deep learning on dynamic graphs represented as sequences of timed events. Thanks to a novel combination of memory modules and graph-based operators, TGNs are able to significantly outperform previous approaches being at the same time more computationally efficient. We furthermore show that several previous models for learning on dynamic graphs can be cast as specific instances of our framework. We perform a detailed ablation study of different components of our framework and devise the best configuration that achieves state-of-the-art performance on several transductive and inductive prediction tasks for dynamic graphs.

Visual Question Answering (VQA) models have struggled with counting objects in natural images so far. We identify a fundamental problem due to soft attention in these models as a cause. To circumvent this problem, we propose a neural network component that allows robust counting from object proposals. Experiments on a toy task show the effectiveness of this component and we obtain state-of-the-art accuracy on the number category of the VQA v2 dataset without negatively affecting other categories, even outperforming ensemble models with our single model. On a difficult balanced pair metric, the component gives a substantial improvement in counting over a strong baseline by 6.6%.

北京阿比特科技有限公司