Transformer-based models have achieved great breakthroughs in recent years. However, there are many significant questions that have not been answered in the field of explaining the reason why the models have powerful outputs. We do not know how to locate the models' important parameters storing the knowledge for predicting the next word, and whether these parameters are stored on the same layer/module or different ones. Moreover, we do not understand the mechanism to merge the knowledge into the final embedding for next word prediction. In this paper, we explore the residual stream of transformers to increase the interpretability. We find the mechanism behind residual connection is a direct addition function on before-softmax values, so the probabilities of tokens with larger before-softmax values will increase. Moreover, we prove that using log probability increase as contribution scores is reasonable, and based on this we can locate important parameters. Besides, we propose a method to analyze how previous layers affect upper layers by comparing the inner products. The experimental results and case study show that our research can increase the interpretability of transformer-based models. We will release our code on //github.com/zepingyu0512/residualstream.
Language models (LMs) have become ubiquitous in both NLP research and in commercial product offerings. As their commercial importance has surged, the most powerful models have become closed off, gated behind proprietary interfaces, with important details of their training data, architectures, and development undisclosed. Given the importance of these details in scientifically studying these models, including their biases and potential risks, we believe it is essential for the research community to have access to powerful, truly open LMs. To this end, this technical report details the first release of OLMo, a state-of-the-art, truly Open Language Model and its framework to build and study the science of language modeling. Unlike most prior efforts that have only released model weights and inference code, we release OLMo and the whole framework, including training data and training and evaluation code. We hope this release will empower and strengthen the open research community and inspire a new wave of innovation.
As the scaling of Large Language Models (LLMs) has dramatically enhanced their capabilities, there has been a growing focus on the alignment problem to ensure their responsible and ethical use. While existing alignment efforts predominantly concentrate on universal values such as the HHH principle, the aspect of culture, which is inherently pluralistic and diverse, has not received adequate attention. This work introduces a new benchmark, CDEval, aimed at evaluating the cultural dimensions of LLMs. CDEval is constructed by incorporating both GPT-4's automated generation and human verification, covering six cultural dimensions across seven domains. Our comprehensive experiments provide intriguing insights into the culture of mainstream LLMs, highlighting both consistencies and variations across different dimensions and domains. The findings underscore the importance of integrating cultural considerations in LLM development, particularly for applications in diverse cultural settings. Through CDEval, we aim to broaden the horizon of LLM alignment research by including cultural dimensions, thus providing a more holistic framework for the future development and evaluation of LLMs. This benchmark serves as a valuable resource for cultural studies in LLMs, paving the way for more culturally aware and sensitive models.
The Lightning Network (LN) has enjoyed rapid growth over recent years, and has become the most popular scaling solution for the Bitcoin blockchain. The security of the LN relies on the ability of the nodes to close a channel by settling their balances, which requires confirming a transaction on the Bitcoin blockchain within a pre-agreed time period. We study the susceptibility of the LN to mass exit attacks in case of high transaction congestion, in the presence of a small coalition of adversarial nodes that forces a large set of honest users to interact with the blockchain. We focus on two types of attacks: (i) The first is a zombie attack, where a set of k nodes become unresponsive with the goal of locking the funds of many channels for a period of time longer than what the LN protocol dictates. (ii) The second is a mass double-spend attack, where a set of k nodes attempt to steal funds by submitting many closing transactions that settle channels using expired protocol states; this causes many honest nodes to have to quickly respond by submitting invalidating transactions. We show via simulations that, under historically plausible congestion conditions, with mild statistical assumptions on channel balances, both attacks can be performed by a very small coalition. To perform our simulations, we formulate the problem of finding a worst-case coalition of k adversarial nodes as a graph cut problem. Our experimental findings are supported by theoretical justifications based on the scale-free topology of the LN.
Recently, peoples awareness of online purchases has significantly risen. This has given rise to online retail platforms and the need for a better understanding of customer purchasing behaviour. Retail companies are pressed with the need to deal with a high volume of customer purchases, which requires sophisticated approaches to perform more accurate and efficient customer segmentation. Customer segmentation is a marketing analytical tool that aids customer-centric service and thus enhances profitability. In this paper, we aim to develop a customer segmentation model to improve decision-making processes in the retail market industry. To achieve this, we employed a UK-based online retail dataset obtained from the UCI machine learning repository. The retail dataset consists of 541,909 customer records and eight features. Our study adopted the RFM (recency, frequency, and monetary) framework to quantify customer values. Thereafter, we compared several state-of-the-art (SOTA) clustering algorithms, namely, K-means clustering, the Gaussian mixture model (GMM), density-based spatial clustering of applications with noise (DBSCAN), agglomerative clustering, and balanced iterative reducing and clustering using hierarchies (BIRCH). The results showed the GMM outperformed other approaches, with a Silhouette Score of 0.80.
The dominance of social media has added to the channels of bullying for perpetrators. Unfortunately, cyberbullying (CB) is the most prevalent phenomenon in todays cyber world, and is a severe threat to the mental and physical health of citizens. This opens the need to develop a robust system to prevent bullying content from online forums, blogs, and social media platforms to manage the impact in our society. Several machine learning (ML) algorithms have been proposed for this purpose. However, their performances are not consistent due to high class imbalance and generalisation issues. In recent years, large language models (LLMs) like BERT and RoBERTa have achieved state-of-the-art (SOTA) results in several natural language processing (NLP) tasks. Unfortunately, the LLMs have not been applied extensively for CB detection. In our paper, we explored the use of these models for cyberbullying (CB) detection. We have prepared a new dataset (D2) from existing studies (Formspring and Twitter). Our experimental results for dataset D1 and D2 showed that RoBERTa outperformed other models.
The free distance of a convolutional code is a reliable indicator of its performance. However its computation is not an easy task. In this paper, we present some algorithms to compute the free distance with good efficiency that work for convolutional codes of all rates and over any field. Furthermore we discuss why an algorithm which is claimed to be very efficient is incorrect.
Whenever inspected by humans, reconstructed signals should not be distinguished from real ones. Typically, such a high perceptual quality comes at the price of high reconstruction error, and vice versa. We study this distortion-perception (DP) tradeoff over finite-alphabet channels, for the Wasserstein-$1$ distance induced by a general metric as the perception index, and an arbitrary distortion matrix. Under this setting, we show that computing the DP function and the optimal reconstructions is equivalent to solving a set of linear programming problems. We provide a structural characterization of the DP tradeoff, where the DP function is piecewise linear in the perception index. We further derive a closed-form expression for the case of binary sources.
Reasoning, a crucial ability for complex problem-solving, plays a pivotal role in various real-world settings such as negotiation, medical diagnosis, and criminal investigation. It serves as a fundamental methodology in the field of Artificial General Intelligence (AGI). With the ongoing development of foundation models, e.g., Large Language Models (LLMs), there is a growing interest in exploring their abilities in reasoning tasks. In this paper, we introduce seminal foundation models proposed or adaptable for reasoning, highlighting the latest advancements in various reasoning tasks, methods, and benchmarks. We then delve into the potential future directions behind the emergence of reasoning abilities within foundation models. We also discuss the relevance of multimodal learning, autonomous agents, and super alignment in the context of reasoning. By discussing these future research directions, we hope to inspire researchers in their exploration of this field, stimulate further advancements in reasoning with foundation models, and contribute to the development of AGI.
As artificial intelligence (AI) models continue to scale up, they are becoming more capable and integrated into various forms of decision-making systems. For models involved in moral decision-making, also known as artificial moral agents (AMA), interpretability provides a way to trust and understand the agent's internal reasoning mechanisms for effective use and error correction. In this paper, we provide an overview of this rapidly-evolving sub-field of AI interpretability, introduce the concept of the Minimum Level of Interpretability (MLI) and recommend an MLI for various types of agents, to aid their safe deployment in real-world settings.
Deep Convolutional Neural Networks (CNNs) are a special type of Neural Networks, which have shown state-of-the-art results on various competitive benchmarks. The powerful learning ability of deep CNN is largely achieved with the use of multiple non-linear feature extraction stages that can automatically learn hierarchical representation from the data. Availability of a large amount of data and improvements in the hardware processing units have accelerated the research in CNNs and recently very interesting deep CNN architectures are reported. The recent race in deep CNN architectures for achieving high performance on the challenging benchmarks has shown that the innovative architectural ideas, as well as parameter optimization, can improve the CNN performance on various vision-related tasks. In this regard, different ideas in the CNN design have been explored such as use of different activation and loss functions, parameter optimization, regularization, and restructuring of processing units. However, the major improvement in representational capacity is achieved by the restructuring of the processing units. Especially, the idea of using a block as a structural unit instead of a layer is gaining substantial appreciation. This survey thus focuses on the intrinsic taxonomy present in the recently reported CNN architectures and consequently, classifies the recent innovations in CNN architectures into seven different categories. These seven categories are based on spatial exploitation, depth, multi-path, width, feature map exploitation, channel boosting and attention. Additionally, it covers the elementary understanding of the CNN components and sheds light on the current challenges and applications of CNNs.