亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Trust-region subproblem (TRS) is an important problem arising in many applications such as numerical optimization, Tikhonov regularization of ill-posed problems, and constrained eigenvalue problems. In recent decades, extensive works focus on how to solve the trust-region subproblem efficiently. To the best of our knowledge, there are few results on perturbation analysis of the trust-region subproblem. In order to fill in this gap, we focus on first-order perturbation theory of the trust-region subproblem. The main contributions of this paper are three-fold. First, suppose that the TRS is in \emph{easy case}, we give a sufficient condition under which the perturbed TRS is still in easy case. Second, with the help of the structure of the TRS and the classical eigenproblem perturbation theory, we perform first-order perturbation analysis on the Lagrange multiplier and the solution of the TRS, and define their condition numbers. Third, we point out that the solution and the Lagrange multiplier could be well-conditioned even if TRS is in {\it nearly hard case}. The established results are computable, and are helpful to evaluate ill-conditioning of the TRS problem beforehand. Numerical experiments show the sharpness of the established bounds and the effectiveness of the proposed strategies.

相關內容

在數(shu)(shu)學優化中,拉格朗日(ri)乘數(shu)(shu)法是一種(zhong)用于尋找受等式約(yue)束(shu)的(de)(de)(de)(de)(de)(de)函數(shu)(shu)的(de)(de)(de)(de)(de)(de)局(ju)部(bu)最大值和最小值的(de)(de)(de)(de)(de)(de)策略(即(ji),必須(xu)滿(man)(man)足所選變(bian)量值必須(xu)完全滿(man)(man)足一個或多個方程式的(de)(de)(de)(de)(de)(de)條件)。它以(yi)數(shu)(shu)學家約(yue)瑟夫·路易斯(si)·拉格朗日(ri)命(ming)名。基本思想是將受約(yue)束(shu)的(de)(de)(de)(de)(de)(de)問題(ti)轉換(huan)為某種(zhong)形(xing)式,以(yi)便仍可以(yi)應(ying)用無約(yue)束(shu)問題(ti)的(de)(de)(de)(de)(de)(de)派生檢驗(yan)。函數(shu)(shu)的(de)(de)(de)(de)(de)(de)梯度(du)與約(yue)束(shu)的(de)(de)(de)(de)(de)(de)梯度(du)之間的(de)(de)(de)(de)(de)(de)關(guan)系很(hen)自(zi)然地導致了原(yuan)始問題(ti)的(de)(de)(de)(de)(de)(de)重構,即(ji)拉格朗日(ri)函數(shu)(shu)。

A non-intrusive proper generalized decomposition (PGD) strategy, coupled with an overlapping domain decomposition (DD) method, is proposed to efficiently construct surrogate models of parametric linear elliptic problems. A parametric multi-domain formulation is presented, with local subproblems featuring arbitrary Dirichlet interface conditions represented through the traces of the finite element functions used for spatial discretization at the subdomain level, with no need for additional auxiliary basis functions. The linearity of the operator is exploited to devise low-dimensional problems with only few active boundary parameters. An overlapping Schwarz method is used to glue the local surrogate models, solving a linear system for the nodal values of the parametric solution at the interfaces, without introducing Lagrange multipliers to enforce the continuity in the overlapping region. The proposed DD-PGD methodology relies on a fully algebraic formulation allowing for real-time computation based on the efficient interpolation of the local surrogate models in the parametric space, with no additional problems to be solved during the execution of the Schwarz algorithm. Numerical results for parametric diffusion and convection-diffusion problems are presented to showcase the accuracy of the DD-PGD approach, its robustness in different regimes and its superior performance with respect to standard high-fidelity DD methods.

Model averaging (MA), a technique for combining estimators from a set of candidate models, has attracted increasing attention in machine learning and statistics. In the existing literature, there is an implicit understanding that MA can be viewed as a form of shrinkage estimation that draws the response vector towards the subspaces spanned by the candidate models. This paper explores this perspective by establishing connections between MA and shrinkage in a linear regression setting with multiple nested models. We first demonstrate that the optimal MA estimator is the best linear estimator with monotone non-increasing weights in a Gaussian sequence model. The Mallows MA, which estimates weights by minimizing the Mallows' $C_p$, is a variation of the positive-part Stein estimator. Motivated by these connections, we develop a novel MA procedure based on a blockwise Stein estimation. Our resulting Stein-type MA estimator is asymptotically optimal across a broad parameter space when the variance is known. Numerical results support our theoretical findings. The connections established in this paper may open up new avenues for investigating MA from different perspectives. A discussion on some topics for future research concludes the paper.

This study examines, in the framework of variational regularization methods, a multi-penalty regularization approach which builds upon the Uniform PENalty (UPEN) method, previously proposed by the authors for Nuclear Magnetic Resonance (NMR) data processing. The paper introduces two iterative methods, UpenMM and GUpenMM, formulated within the Majorization-Minimization (MM) framework. These methods are designed to identify appropriate regularization parameters and solutions for linear inverse problems utilizing multi-penalty regularization. The paper demonstrates the convergence of these methods and illustrates their potential through numerical examples in one and two-dimensional scenarios, showing the practical utility of point-wise regularization terms in solving various inverse problems.

The Multiscale Hierarchical Decomposition Method (MHDM) was introduced as an iterative method for total variation regularization, with the aim of recovering details at various scales from images corrupted by additive or multiplicative noise. Given its success beyond image restoration, we extend the MHDM iterates in order to solve larger classes of linear ill-posed problems in Banach spaces. Thus, we define the MHDM for more general convex or even non-convex penalties, and provide convergence results for the data fidelity term. We also propose a flexible version of the method using adaptive convex functionals for regularization, and show an interesting multiscale decomposition of the data. This decomposition result is highlighted for the Bregman iteration method that can be expressed as an adaptive MHDM. Furthermore, we state necessary and sufficient conditions when the MHDM iteration agrees with the variational Tikhonov regularization, which is the case, for instance, for one-dimensional total variation denoising. Finally, we investigate several particular instances and perform numerical experiments that point out the robust behavior of the MHDM.

We construct a family of Markov decision processes for which the policy iteration algorithm needs an exponential number of improving switches with Dantzig's rule, with Bland's rule, and with the Largest Increase pivot rule. This immediately translates to a family of linear programs for which the simplex algorithm needs an exponential number of pivot steps with the same three pivot rules. Our results yield a unified construction that simultaneously reproduces well-known lower bounds for these classical pivot rules, and we are able to infer that any (deterministic or randomized) combination of them cannot avoid an exponential worst-case behavior. Regarding the policy iteration algorithm, pivot rules typically switch multiple edges simultaneously and our lower bound for Dantzig's rule and the Largest Increase rule, which perform only single switches, seem novel. Regarding the simplex algorithm, the individual lower bounds were previously obtained separately via deformed hypercube constructions. In contrast to previous bounds for the simplex algorithm via Markov decision processes, our rigorous analysis is reasonably concise.

The numerical solution of continuum damage mechanics (CDM) problems suffers from convergence-related challenges during the material softening stage, and consequently existing iterative solvers are subject to a trade-off between computational expense and solution accuracy. In this work, we present a novel unified arc-length (UAL) method, and we derive the formulation of the analytical tangent matrix and governing system of equations for both local and non-local gradient damage problems. Unlike existing versions of arc-length solvers that monolithically scale the external force vector, the proposed method treats the latter as an independent variable and determines the position of the system on the equilibrium path based on all the nodal variations of the external force vector. This approach renders the proposed solver substantially more efficient and robust than existing solvers used in CDM problems. We demonstrate the considerable advantages of the proposed algorithm through several benchmark 1D problems with sharp snap-backs and 2D examples under various boundary conditions and loading scenarios. The proposed UAL approach exhibits a superior ability of overcoming critical increments along the equilibrium path. Moreover, the proposed UAL method is 1-2 orders of magnitude faster than force-controlled arc-length and monolithic Newton-Raphson solvers.

In this paper, a high-order approximation to Caputo-type time-fractional diffusion equations involving an initial-time singularity of the solution is proposed. At first, we employ a numerical algorithm based on the Lagrange polynomial interpolation to approximate the Caputo derivative on the non-uniform mesh. Then truncation error rate and the optimal grading constant of the approximation on a graded mesh are obtained as $\min\{4-\alpha,r\alpha\}$ and $\frac{4-\alpha}{\alpha}$, respectively, where $\alpha\in(0,1)$ is the order of fractional derivative and $r\geq 1$ is the mesh grading parameter. Using this new approximation, a difference scheme for the Caputo-type time-fractional diffusion equation on graded temporal mesh is formulated. The scheme proves to be uniquely solvable for general $r$. Then we derive the unconditional stability of the scheme on uniform mesh. The convergence of the scheme, in particular for $r=1$, is analyzed for non-smooth solutions and concluded for smooth solutions. Finally, the accuracy of the scheme is verified by analyzing the error through a few numerical examples.

Discovering causal relationships from observational data is a fundamental yet challenging task. In some applications, it may suffice to learn the causal features of a given response variable, instead of learning the entire underlying causal structure. Invariant causal prediction (ICP, Peters et al., 2016) is a method for causal feature selection which requires data from heterogeneous settings. ICP assumes that the mechanism for generating the response from its direct causes is the same in all settings and exploits this invariance to output a subset of the causal features. The framework of ICP has been extended to general additive noise models and to nonparametric settings using conditional independence testing. However, nonparametric conditional independence testing often suffers from low power (or poor type I error control) and the aforementioned parametric models are not suitable for applications in which the response is not measured on a continuous scale, but rather reflects categories or counts. To bridge this gap, we develop ICP in the context of transformation models (TRAMs), allowing for continuous, categorical, count-type, and uninformatively censored responses (we show that, in general, these model classes do not allow for identifiability when there is no exogenous heterogeneity). We propose TRAM-GCM, a test for invariance of a subset of covariates, based on the expected conditional covariance between environments and score residuals which satisfies uniform asymptotic level guarantees. For the special case of linear shift TRAMs, we propose an additional invariance test, TRAM-Wald, based on the Wald statistic. We implement both proposed methods in the open-source R package "tramicp" and show in simulations that under the correct model specification, our approach empirically yields higher power than nonparametric ICP based on conditional independence testing.

In the linear regression model, the minimum l2-norm interpolant estimator has received much attention since it was proved to be consistent even though it fits noisy data perfectly under some condition on the covariance matrix $\Sigma$ of the input vector, known as benign overfitting. Motivated by this phenomenon, we study the generalization property of this estimator from a geometrical viewpoint. Our main results extend and improve the convergence rates as well as the deviation probability from [Tsigler and Bartlett]. Our proof differs from the classical bias/variance analysis and is based on the self-induced regularization property introduced in [Bartlett, Montanari and Rakhlin]: the minimum l2-norm interpolant estimator can be written as a sum of a ridge estimator and an overfitting component. The two geometrical properties of random Gaussian matrices at the heart of our analysis are the Dvoretsky-Milman theorem and isomorphic and restricted isomorphic properties. In particular, the Dvoretsky dimension appearing naturally in our geometrical viewpoint, coincides with the effective rank and is the key tool for handling the behavior of the design matrix restricted to the sub-space where overfitting happens. We extend these results to heavy-tailed scenarii proving the universality of this phenomenon beyond exponential moment assumptions. This phenomenon is unknown before and is widely believed to be a significant challenge. This follows from an anistropic version of the probabilistic Dvoretsky-Milman theorem that holds for heavy-tailed vectors which is of independent interest.

We propose an approach to compute inner and outer-approximations of the sets of values satisfying constraints expressed as arbitrarily quantified formulas. Such formulas arise for instance when specifying important problems in control such as robustness, motion planning or controllers comparison. We propose an interval-based method which allows for tractable but tight approximations. We demonstrate its applicability through a series of examples and benchmarks using a prototype implementation.

北京阿比特科技有限公司