亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Many classical constructions, such as Plotkin's and Turyn's, were generalized by matrix product (MP) codes. Quasi-twisted (QT) codes, on the other hand, form an algebraically rich structure class that contains many codes with best-known parameters. We significantly extend the definition of MP codes to establish a broader class of generalized matrix product (GMP) codes that contains QT codes as well. We propose a generator matrix formula for any linear GMP code and provide a condition for determining the code size. We prove that any QT code has a GMP structure. Then we show how to build a generator polynomial matrix for a QT code from its GMP structure, and vice versa. Despite that the class of QT codes contains many codes with best-known parameters, we present different examples of GMP codes with best-known parameters that are neither MP nor QT. Two different lower bounds on the minimum distance of GMP codes are presented; they generalize their counterparts in the MP codes literature. The second proposed lower bound replaces the non-singular by columns matrix with a less restrictive condition. Some examples are provided for comparing the two proposed bounds, as well as showing that these bounds are tight.

相關內容

何建模和處理國際會議(GMP)是關于幾何建模的數學和計算方面的年度國際會議系列和模擬。GMP會議系列為研究人員和從業人員提供了一個交流新思想,討論新應用和提出新解決方案的論壇。幾何數據的建模和處理是許多計算機應用程序的基礎,包括計算機圖形學,計算機視覺,CAD / CAM,醫學成像,工程分析,機器人技術,增材制造和科學計算。 官網地址:

Causal representation learning algorithms discover lower-dimensional representations of data that admit a decipherable interpretation of cause and effect; as achieving such interpretable representations is challenging, many causal learning algorithms utilize elements indicating prior information, such as (linear) structural causal models, interventional data, or weak supervision. Unfortunately, in exploratory causal representation learning, such elements and prior information may not be available or warranted. Alternatively, scientific datasets often have multiple modalities or physics-based constraints, and the use of such scientific, multimodal data has been shown to improve disentanglement in fully unsupervised settings. Consequently, we introduce a causal representation learning algorithm (causalPIMA) that can use multimodal data and known physics to discover important features with causal relationships. Our innovative algorithm utilizes a new differentiable parametrization to learn a directed acyclic graph (DAG) together with a latent space of a variational autoencoder in an end-to-end differentiable framework via a single, tractable evidence lower bound loss function. We place a Gaussian mixture prior on the latent space and identify each of the mixtures with an outcome of the DAG nodes; this novel identification enables feature discovery with causal relationships. Tested against a synthetic and a scientific dataset, our results demonstrate the capability of learning an interpretable causal structure while simultaneously discovering key features in a fully unsupervised setting.

Difficult, in particular NP-complete, optimization problems are traditionally solved approximately using search heuristics. These are usually slowed down by the rugged landscapes encountered, because local minima arrest the search process. Cover-encoding maps were devised to circumvent this problem by transforming the original landscape to one that is free of local minima and enriched in near-optimal solutions. By definition, these involve the mapping of the original (larger) search space into smaller subspaces, by processes that typically amount to a form of coarse-graining. In this paper, we explore the details of this coarse-graining using formal arguments, as well as concrete examples of cover-encoding maps, that are investigated analytically as well as computationally. Our results strongly suggest that the coarse-graining involved in cover-encoding maps bears a strong resemblance to that encountered in renormalisation group schemes. Given the apparently disparate nature of these two formalisms, these strong similarities are rather startling, and suggest deep mathematical underpinnings that await further exploration.

We combine Kronecker products, and quantitative information flow, to give a novel formal analysis for the fine-grained verification of utility in complex privacy pipelines. The combination explains a surprising anomaly in the behaviour of utility of privacy-preserving pipelines -- that sometimes a reduction in privacy results also in a decrease in utility. We use the standard measure of utility for Bayesian analysis, introduced by Ghosh at al., to produce tractable and rigorous proofs of the fine-grained statistical behaviour leading to the anomaly. More generally, we offer the prospect of formal-analysis tools for utility that complement extant formal analyses of privacy. We demonstrate our results on a number of common privacy-preserving designs.

We consider twisted permutation codes, a class of frequency permutation arrays obtained from finite groups with multiple permutation representations of the same degree, introduced by Gillespie, Praeger and Spiga (and later studied by Akbari, Gillespie and Praeger), and develop a decoding algorithm for such codes based on earlier work of the first author for permutation group codes. In particular, we show how to implement this algorithm for an infinite family of groups considered by Akbari, Gillespie and Praeger.

Estimating a prediction function is a fundamental component of many data analyses. The Super Learner ensemble, a particular implementation of stacking, has desirable theoretical properties and has been used successfully in many applications. Dimension reduction can be accomplished by using variable screening algorithms, including the lasso, within the ensemble prior to fitting other prediction algorithms. However, the performance of a Super Learner using the lasso for dimension reduction has not been fully explored in cases where the lasso is known to perform poorly. We provide empirical results that suggest that a diverse set of candidate screening algorithms should be used to protect against poor performance of any one screen, similar to the guidance for choosing a library of prediction algorithms for the Super Learner.

Completely random measures (CRMs) and their normalizations (NCRMs) offer flexible models in Bayesian nonparametrics. But their infinite dimensionality presents challenges for inference. Two popular finite approximations are truncated finite approximations (TFAs) and independent finite approximations (IFAs). While the former have been well-studied, IFAs lack similarly general bounds on approximation error, and there has been no systematic comparison between the two options. In the present work, we propose a general recipe to construct practical finite-dimensional approximations for homogeneous CRMs and NCRMs, in the presence or absence of power laws. We call our construction the automated independent finite approximation (AIFA). Relative to TFAs, we show that AIFAs facilitate more straightforward derivations and use of parallel computing in approximate inference. We upper bound the approximation error of AIFAs for a wide class of common CRMs and NCRMs -- and thereby develop guidelines for choosing the approximation level. Our lower bounds in key cases suggest that our upper bounds are tight. We prove that, for worst-case choices of observation likelihoods, TFAs are more efficient than AIFAs. Conversely, we find that in real-data experiments with standard likelihoods, AIFAs and TFAs perform similarly. Moreover, we demonstrate that AIFAs can be used for hyperparameter estimation even when other potential IFA options struggle or do not apply.

Quantum computing has recently emerged as a transformative technology. Yet, its promised advantages rely on efficiently translating quantum operations into viable physical realizations. In this work, we use generative machine learning models, specifically denoising diffusion models (DMs), to facilitate this transformation. Leveraging text-conditioning, we steer the model to produce desired quantum operations within gate-based quantum circuits. Notably, DMs allow to sidestep during training the exponential overhead inherent in the classical simulation of quantum dynamics -- a consistent bottleneck in preceding ML techniques. We demonstrate the model's capabilities across two tasks: entanglement generation and unitary compilation. The model excels at generating new circuits and supports typical DM extensions such as masking and editing to, for instance, align the circuit generation to the constraints of the targeted quantum device. Given their flexibility and generalization abilities, we envision DMs as pivotal in quantum circuit synthesis, enhancing both practical applications but also insights into theoretical quantum computation.

Remotely sensed data are dominated by mixed Land Use and Land Cover (LULC) types. Spectral unmixing is a technique to extract information from mixed pixels into their constituent LULC types and corresponding abundance fractions. Traditionally, solving this task has relied on either classical methods that require prior knowledge of endmembers or machine learning methods that avoid explicit endmembers calculation, also known as blind spectral unmixing (BSU). Most BSU studies based on Deep Learning (DL) focus on one time-step hyperspectral or multispectral data. To our knowledge, here we provide the first study on BSU of LULC classes using MODIS multispectral time series, in presence of missing data, with end-to-end DL models. We further boost the performance of a Long-Short Term Memory (LSTM)-based model by incorporating geographic plus topographic (geo-topographic) and climatic ancillary information. Our experiments show that combining spectral-temporal input data together with geo-topographic and climatic information substantially improves the abundance estimation of LULC classes in mixed pixels. To carry out this study, we built a new labeled dataset of the region of Andalusia (Spain) with monthly multispectral time series of pixels for the year 2013 from MODIS at 460m resolution, for two hierarchical levels of LULC classes, named Andalusia MultiSpectral MultiTemporal Unmixing (Andalusia-MSMTU). This dataset provides, at the pixel level, a multispectral time series plus ancillary information annotated with the abundance of each LULC class inside each pixel. The dataset (//zenodo.org/record/7752348##.ZBmkkezMLdo) and code (//github.com/jrodriguezortega/MSMTU) are available to the public.

We determine the minimum possible column multiplicity of even, doubly-, and triply-even codes given their length. This refines a classification result for the possible lengths of $q^r$-divisible codes over $\mathbb{F}_q$. We also give a few computational results for field sizes $q>2$. Non-existence results of divisible codes with restricted column multiplicities for a given length have applications e.g. in Galois geometry and can be used for upper bounds on the maximum cardinality of subspace codes.

Using fault-tolerant constructions, computations performed with unreliable components can simulate their noiseless counterparts though the introduction of a modest amount of redundancy. Given the modest overhead required to achieve fault-tolerance, and the fact that increasing the reliability of basic components often comes at a cost, are there situations where fault-tolerance may be more economical? We present a general framework to account for this overhead cost in order to effectively compare fault-tolerant to non-fault-tolerant approaches for computation, in the limit of small logical error rates. Using this detailed accounting, we determine explicit boundaries at which fault-tolerant designs become more efficient than designs that achieve comparable reliability through direct consumption of resources. We find that the fault-tolerant construction is always preferred in the limit of high reliability in cases where the resources required to construct a basic unit grows faster than $\log(1 / \epsilon)$ asymptotically for small $\epsilon$.

北京阿比特科技有限公司