We introduce a novel sufficient dimension-reduction (SDR) method which is robust against outliers using $\alpha$-distance covariance (dCov) in dimension-reduction problems. Under very mild conditions on the predictors, the central subspace is effectively estimated and model-free advantage without estimating link function based on the projection on the Stiefel manifold. We establish the convergence property of the proposed estimation under some regularity conditions. We compare the performance of our method with existing SDR methods by simulation and real data analysis and show that our algorithm improves the computational efficiency and effectiveness.
Modern large language models (LLMs) exhibit a remarkable capacity for role-playing, enabling them to embody not only human characters but also non-human entities. This versatility allows them to simulate complex human-like interactions and behaviors within various contexts, as well as to emulate specific objects or systems. While these capabilities have enhanced user engagement and introduced novel modes of interaction, the influence of role-playing on LLMs' reasoning abilities remains underexplored. In this study, we introduce a strategically designed role-play prompting methodology and assess its performance under the zero-shot setting across twelve diverse reasoning benchmarks. Our empirical results illustrate that role-play prompting consistently surpasses the standard zero-shot approach across most datasets. Notably, in experiments conducted using ChatGPT, accuracy on AQuA rises from 53.5% to 63.8%, and on Last Letter from 23.8% to 84.2%.Upon further comparison with the Zero-Shot-CoT technique, which prompts the model to "think step by step", our study demonstrates that role-play prompting acts as a more effective trigger for the CoT process. This highlights its potential to augment the reasoning capabilities of LLMs. We release our code at //github.com/NKU-HLT/Role-Play-Prompting.
We give a procedure for computing group-level $(\epsilon, \delta)$-DP guarantees for DP-SGD, when using Poisson sampling or fixed batch size sampling. Up to discretization errors in the implementation, the DP guarantees computed by this procedure are tight (assuming we release every intermediate iterate).
Underlying data distributions of natural language, programming code, and mathematical symbols vary vastly, presenting a complex challenge for large language models (LLMs) that strive to achieve high performance across all three domains simultaneously. Achieving a very high level of proficiency for an LLM within a specific domain often requires extensive training with relevant corpora, which is typically accompanied by a sacrifice in performance in other domains. In this paper, we propose to fuse models that are already highly-specialized directly. The proposed fusing framework, UltraFuser, consists of three distinct specialists that are already sufficiently trained on language, coding, and mathematics. A token-level gating mechanism is introduced to blend the specialists' outputs. A two-stage training strategy accompanied by balanced sampling is designed to ensure stability. To effectively train the fused model, we further construct a high-quality supervised instruction tuning dataset, UltraChat 2, which includes text, code, and mathematical content. This dataset comprises approximately 300,000 instructions and covers a wide range of topics in each domain. Experiments show that our model could simultaneously achieve mastery of the three crucial domains.
We introduce a constructive analogue of $\Phi$-dimension, a notion of Hausdorff dimension developed using a restricted class of coverings of a set. A class of coverings $\Phi$ is said to be "faithful" to Hausdorff dimension if the $\Phi$-dimension and Hausdorff dimension coincide for every set. We prove a Point-to-Set Principle for $\Phi$-dimension, through which we get Point-to-Set Principles for Hausdorff Dimension, continued-fraction dimension and dimension of Cantor Coverings as special cases. Using the Point-to-Set Principle for Cantor coverings and a new technique for the construction of sequences satisfying a certain Kolmogorov complexity condition, we show that the notions of faithfulness of Cantor coverings at the Hausdorff and constructive levels are equivalent. We adapt the result by Albeverio, Ivanenko, Lebid, and Torbin to derive the necessary and sufficient conditions for the constructive dimension faithfulness of the coverings generated by the Cantor series expansion. This condition yields two general classes of representations of reals, one whose constructive dimensions that are equivalent to the constructive Hausdorff dimensions, and another, whose effective dimensions are different from the effective Hausdorff dimensions, completely classifying Cantor series expansions of reals.
We consider a binary decision aggregation problem in the presence of both truthful and adversarial experts. The truthful experts will report their private signals truthfully with proper incentive, while the adversarial experts can report arbitrarily. The decision maker needs to design a robust aggregator to forecast the true state of the world based on the reports of experts. The decision maker does not know the specific information structure, which is a joint distribution of signals, states, and strategies of adversarial experts. We want to find the optimal aggregator minimizing regret under the worst information structure. The regret is defined by the difference in expected loss between the aggregator and a benchmark who makes the optimal decision given the joint distribution and reports of truthful experts. We prove that when the truthful experts are symmetric and adversarial experts are not too numerous, the truncated mean is optimal, which means that we remove some lowest reports and highest reports and take averaging among the left reports. Moreover, for many settings, the optimal aggregators are in the family of piecewise linear functions. The regret is independent of the total number of experts but only depends on the ratio of adversaries. We evaluate our aggregators by numerical experiment in an ensemble learning task. We also obtain some negative results for the aggregation problem with adversarial experts under some more general information structures and experts' report space.
Conformalized Quantile Regression (CQR) is a recently proposed method for constructing prediction intervals for a response $Y$ given covariates $X$, without making distributional assumptions. However, existing constructions of CQR can be ineffective for problems where the quantile regressors perform better in certain parts of the feature space than others. The reason is that the prediction intervals of CQR do not distinguish between two forms of uncertainty: first, the variability of the conditional distribution of $Y$ given $X$ (i.e., aleatoric uncertainty), and second, our uncertainty in estimating this conditional distribution (i.e., epistemic uncertainty). This can lead to intervals that are overly narrow in regions where epistemic uncertainty is high. To address this, we propose a new variant of the CQR methodology, Uncertainty-Aware CQR (UACQR), that explicitly separates these two sources of uncertainty to adjust quantile regressors differentially across the feature space. Compared to CQR, our methods enjoy the same distribution-free theoretical coverage guarantees, while demonstrating in our experiments stronger conditional coverage properties in simulated settings and real-world data sets alike.
Image super-resolution (SR) methods typically model degradation to improve reconstruction accuracy in complex and unknown degradation scenarios. However, extracting degradation information from low-resolution images is challenging, which limits the model performance. To boost image SR performance, one feasible approach is to introduce additional priors. Inspired by advancements in multi-modal methods and text prompt image processing, we introduce text prompts to image SR to provide degradation priors. Specifically, we first design a text-image generation pipeline to integrate text into the SR dataset through the text degradation representation and degradation model. The text representation applies a discretization manner based on the binning method to describe the degradation abstractly. This method maintains the flexibility of the text and is user-friendly. Meanwhile, we propose the PromptSR to realize the text prompt SR. The PromptSR utilizes the pre-trained language model (e.g., T5 or CLIP) to enhance restoration. We train the model on the generated text-image dataset. Extensive experiments indicate that introducing text prompts into SR, yields excellent results on both synthetic and real-world images. Code is available at: //github.com/zhengchen1999/PromptSR.
In this work, we present 3DCoMPaT$^{++}$, a multimodal 2D/3D dataset with 160 million rendered views of more than 10 million stylized 3D shapes carefully annotated at the part-instance level, alongside matching RGB point clouds, 3D textured meshes, depth maps, and segmentation masks. 3DCoMPaT$^{++}$ covers 41 shape categories, 275 fine-grained part categories, and 293 fine-grained material classes that can be compositionally applied to parts of 3D objects. We render a subset of one million stylized shapes from four equally spaced views as well as four randomized views, leading to a total of 160 million renderings. Parts are segmented at the instance level, with coarse-grained and fine-grained semantic levels. We introduce a new task, called Grounded CoMPaT Recognition (GCR), to collectively recognize and ground compositions of materials on parts of 3D objects. Additionally, we report the outcomes of a data challenge organized at CVPR2023, showcasing the winning method's utilization of a modified PointNet$^{++}$ model trained on 6D inputs, and exploring alternative techniques for GCR enhancement. We hope our work will help ease future research on compositional 3D Vision.
Quantum circuit compilation comprises many computationally hard reasoning tasks that nonetheless lie inside #$\mathbf{P}$ and its decision counterpart in $\mathbf{PP}$. The classical simulation of general quantum circuits is a core example. We show for the first time that a strong simulation of universal quantum circuits can be efficiently tackled through weighted model counting by providing a linear encoding of Clifford+T circuits. To achieve this, we exploit the stabilizer formalism by Knill, Gottesmann, and Aaronson and the fact that stabilizer states form a basis for density operators. With an open-source simulator implementation, we demonstrate empirically that model counting often outperforms state-of-the-art simulation techniques based on the ZX calculus and decision diagrams. Our work paves the way to apply the existing array of powerful classical reasoning tools to realize efficient quantum circuit compilation; one of the obstacles on the road towards quantum supremacy.
Manually labeling objects by tracing their boundaries is a laborious process. In Polygon-RNN++ the authors proposed Polygon-RNN that produces polygonal annotations in a recurrent manner using a CNN-RNN architecture, allowing interactive correction via humans-in-the-loop. We propose a new framework that alleviates the sequential nature of Polygon-RNN, by predicting all vertices simultaneously using a Graph Convolutional Network (GCN). Our model is trained end-to-end. It supports object annotation by either polygons or splines, facilitating labeling efficiency for both line-based and curved objects. We show that Curve-GCN outperforms all existing approaches in automatic mode, including the powerful PSP-DeepLab and is significantly more efficient in interactive mode than Polygon-RNN++. Our model runs at 29.3ms in automatic, and 2.6ms in interactive mode, making it 10x and 100x faster than Polygon-RNN++.