亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Recent advances in image captioning are mainly driven by large-scale vision-language pretraining, relying heavily on computational resources and increasingly large multimodal datasets. Instead of scaling up pretraining data, we ask whether it is possible to improve performance by improving the quality of the samples in existing datasets. We pursue this question through two approaches to data curation: one that assumes that some examples should be avoided due to mismatches between the image and caption, and one that assumes that the mismatch can be addressed by replacing the image, for which we use the state-of-the-art Stable Diffusion model. These approaches are evaluated using the BLIP model on MS COCO and Flickr30K in both finetuning and few-shot learning settings. Our simple yet effective approaches consistently outperform baselines, indicating that better image captioning models can be trained by curating existing resources. Finally, we conduct a human study to understand the errors made by the Stable Diffusion model and highlight directions for future work in text-to-image generation.

相關內容

圖像字幕(Image Captioning),是指從圖像生成文本描述的過程,主要根據圖像中物體和物體的動作。

Recently, text-to-image diffusion models have shown remarkable capabilities in creating realistic images from natural language prompts. However, few works have explored using these models for semantic localization or grounding. In this work, we explore how an off-the-shelf text-to-image diffusion model, trained without exposure to localization information, can ground various semantic phrases without segmentation-specific re-training. We introduce an inference time optimization process capable of generating segmentation masks conditioned on natural language prompts. Our proposal, Peekaboo, is a first-of-its-kind zero-shot, open-vocabulary, unsupervised semantic grounding technique leveraging diffusion models without any training. We evaluate Peekaboo on the Pascal VOC dataset for unsupervised semantic segmentation and the RefCOCO dataset for referring segmentation, showing results competitive with promising results. We also demonstrate how Peekaboo can be used to generate images with transparency, even though the underlying diffusion model was only trained on RGB images - which to our knowledge we are the first to attempt. Please see our project page, including our code: //ryanndagreat.github.io/peekaboo

State-of-The-Art (SoTA) image captioning models often rely on the Microsoft COCO (MS-COCO) dataset for training. This dataset contains annotations provided by human annotators, who typically produce captions averaging around ten tokens. However, this constraint presents a challenge in effectively capturing complex scenes and conveying detailed information. Furthermore, captioning models tend to exhibit bias towards the ``average'' caption, which captures only the more general aspects. What would happen if we were able to automatically generate longer captions, thereby making them more detailed? Would these captions, evaluated by humans, be more or less representative of the image content compared to the original MS-COCO captions? In this paper, we present a novel approach to address previous challenges by showcasing how captions generated from different SoTA models can be effectively fused, resulting in richer captions. Our proposed method leverages existing models from the literature, eliminating the need for additional training. Instead, it utilizes an image-text based metric to rank the captions generated by SoTA models for a given image. Subsequently, the top two captions are fused using a Large Language Model (LLM). Experimental results demonstrate the effectiveness of our approach, as the captions generated by our model exhibit higher consistency with human judgment when evaluated on the MS-COCO test set. By combining the strengths of various SoTA models, our method enhances the quality and appeal of image captions, bridging the gap between automated systems and the rich, informative nature of human-generated descriptions. This advance opens up new possibilities for generating captions that are more suitable for the training of both vision-language and captioning models.

Humankind is entering a novel creative era in which anybody can synthesize digital information using generative artificial intelligence (AI). Text-to-image generation, in particular, has become vastly popular and millions of practitioners produce AI-generated images and AI art online. This chapter first gives an overview of the key developments that enabled a healthy co-creative online ecosystem around text-to-image generation to rapidly emerge, followed by a high-level description of key elements in this ecosystem. A particular focus is placed on prompt engineering, a creative practice that has been embraced by the AI art community. It is then argued that the emerging co-creative ecosystem constitutes an intelligent system on its own - a system that both supports human creativity, but also potentially entraps future generations and limits future development efforts in AI. The chapter discusses the potential risks and dangers of cultivating this co-creative ecosystem, such as the bias inherent in today's training data, potential quality degradation in future image generation systems due to synthetic data becoming common place, and the potential long-term effects of text-to-image generation on people's imagination, ambitions, and development.

The recent success of text-to-image synthesis has taken the world by storm and captured the general public's imagination. From a technical standpoint, it also marked a drastic change in the favored architecture to design generative image models. GANs used to be the de facto choice, with techniques like StyleGAN. With DALL-E 2, auto-regressive and diffusion models became the new standard for large-scale generative models overnight. This rapid shift raises a fundamental question: can we scale up GANs to benefit from large datasets like LAION? We find that na\"Ively increasing the capacity of the StyleGAN architecture quickly becomes unstable. We introduce GigaGAN, a new GAN architecture that far exceeds this limit, demonstrating GANs as a viable option for text-to-image synthesis. GigaGAN offers three major advantages. First, it is orders of magnitude faster at inference time, taking only 0.13 seconds to synthesize a 512px image. Second, it can synthesize high-resolution images, for example, 16-megapixel pixels in 3.66 seconds. Finally, GigaGAN supports various latent space editing applications such as latent interpolation, style mixing, and vector arithmetic operations.

Despite the remarkable performance of text-to-image diffusion models in image generation tasks, recent studies have raised the issue that generated images sometimes cannot capture the intended semantic contents of the text prompts, which phenomenon is often called semantic misalignment. To address this, here we present a novel energy-based model (EBM) framework. Specifically, we first formulate EBMs of latent image representations and text embeddings in each cross-attention layer of the denoising autoencoder. Then, we obtain the gradient of the log posterior of context vectors, which can be updated and transferred to the subsequent cross-attention layer, thereby implicitly minimizing a nested hierarchy of energy functions. Our latent EBMs further allow zero-shot compositional generation as a linear combination of cross-attention outputs from different contexts. Using extensive experiments, we demonstrate that the proposed method is highly effective in handling various image generation tasks, including multi-concept generation, text-guided image inpainting, and real and synthetic image editing.

Despite the notable accomplishments of deep object detection models, a major challenge that persists is the requirement for extensive amounts of training data. The process of procuring such real-world data is a laborious undertaking, which has prompted researchers to explore new avenues of research, such as synthetic data generation techniques. This study presents a framework for the generation of synthetic datasets by fine-tuning pretrained stable diffusion models. The synthetic datasets are then manually annotated and employed for training various object detection models. These detectors are evaluated on a real-world test set of 331 images and compared against a baseline model that was trained on real-world images. The results of this study reveal that the object detection models trained on synthetic data perform similarly to the baseline model. In the context of apple detection in orchards, the average precision deviation with the baseline ranges from 0.09 to 0.12. This study illustrates the potential of synthetic data generation techniques as a viable alternative to the collection of extensive training data for the training of deep models.

In recent years, a significant number of high-quality pretrained models have emerged, greatly impacting Natural Language Understanding (NLU), Natural Language Generation (NLG), and Text Representation tasks. Traditionally, these models are pretrained on custom domain corpora and finetuned for specific tasks, resulting in high costs related to GPU usage and labor. Unfortunately, recent trends in language modeling have shifted towards enhancing performance through scaling, further exacerbating the associated costs. Introducing GUR: a pretraining framework that combines language modeling and contrastive learning objectives in a single training step. We select similar text pairs based on their Longest Common Substring (LCS) from raw unlabeled documents and train the model using masked language modeling and unsupervised contrastive learning. The resulting model, GUR, achieves impressive results without any labeled training data, outperforming all other pretrained baselines as a retriever at the recall benchmark in a zero-shot setting. Additionally, GUR maintains its language modeling ability, as demonstrated in our ablation experiment. Our code is available at \url{//github.com/laohur/GUR}.

Connecting Vision and Language plays an essential role in Generative Intelligence. For this reason, in the last few years, a large research effort has been devoted to image captioning, i.e. the task of describing images with syntactically and semantically meaningful sentences. Starting from 2015 the task has generally been addressed with pipelines composed of a visual encoding step and a language model for text generation. During these years, both components have evolved considerably through the exploitation of object regions, attributes, and relationships and the introduction of multi-modal connections, fully-attentive approaches, and BERT-like early-fusion strategies. However, regardless of the impressive results obtained, research in image captioning has not reached a conclusive answer yet. This work aims at providing a comprehensive overview and categorization of image captioning approaches, from visual encoding and text generation to training strategies, used datasets, and evaluation metrics. In this respect, we quantitatively compare many relevant state-of-the-art approaches to identify the most impactful technical innovations in image captioning architectures and training strategies. Moreover, many variants of the problem and its open challenges are analyzed and discussed. The final goal of this work is to serve as a tool for understanding the existing state-of-the-art and highlighting the future directions for an area of research where Computer Vision and Natural Language Processing can find an optimal synergy.

Modern neural network training relies heavily on data augmentation for improved generalization. After the initial success of label-preserving augmentations, there has been a recent surge of interest in label-perturbing approaches, which combine features and labels across training samples to smooth the learned decision surface. In this paper, we propose a new augmentation method that leverages the first and second moments extracted and re-injected by feature normalization. We replace the moments of the learned features of one training image by those of another, and also interpolate the target labels. As our approach is fast, operates entirely in feature space, and mixes different signals than prior methods, one can effectively combine it with existing augmentation methods. We demonstrate its efficacy across benchmark data sets in computer vision, speech, and natural language processing, where it consistently improves the generalization performance of highly competitive baseline networks.

It is always well believed that modeling relationships between objects would be helpful for representing and eventually describing an image. Nevertheless, there has not been evidence in support of the idea on image description generation. In this paper, we introduce a new design to explore the connections between objects for image captioning under the umbrella of attention-based encoder-decoder framework. Specifically, we present Graph Convolutional Networks plus Long Short-Term Memory (dubbed as GCN-LSTM) architecture that novelly integrates both semantic and spatial object relationships into image encoder. Technically, we build graphs over the detected objects in an image based on their spatial and semantic connections. The representations of each region proposed on objects are then refined by leveraging graph structure through GCN. With the learnt region-level features, our GCN-LSTM capitalizes on LSTM-based captioning framework with attention mechanism for sentence generation. Extensive experiments are conducted on COCO image captioning dataset, and superior results are reported when comparing to state-of-the-art approaches. More remarkably, GCN-LSTM increases CIDEr-D performance from 120.1% to 128.7% on COCO testing set.

北京阿比特科技有限公司