Purpose: Obtaining manual annotations to train deep learning (DL) models for auto-segmentation is often time-consuming. Uncertainty-based Bayesian active learning (BAL) is a widely-adopted method to reduce annotation efforts. Based on BAL, this study introduces a hybrid representation-enhanced sampling strategy that integrates density and diversity criteria to save manual annotation costs by efficiently selecting the most informative samples. Methods: The experiments are performed on two lower extremity (LE) datasets of MRI and CT images by a BAL framework based on Bayesian U-net. Our method selects uncertain samples with high density and diversity for manual revision, optimizing for maximal similarity to unlabeled instances and minimal similarity to existing training data. We assess the accuracy and efficiency using Dice and a proposed metric called reduced annotation cost (RAC), respectively. We further evaluate the impact of various acquisition rules on BAL performance and design an ablation study for effectiveness estimation. Results: The proposed method showed superiority or non-inferiority to other methods on both datasets across two acquisition rules, and quantitative results reveal the pros and cons of the acquisition rules. Our ablation study in volume-wise acquisition shows that the combination of density and diversity criteria outperforms solely using either of them in musculoskeletal segmentation. Conclusion: Our sampling method is proven efficient in reducing annotation costs in image segmentation tasks. The combination of the proposed method and our BAL framework provides a semi-automatic way for efficient annotation of medical image datasets.
Electronic Health Record (EHR) data frequently exhibits sparse characteristics, posing challenges for predictive modeling. Current direct imputation such as matrix imputation approaches hinge on referencing analogous rows or columns to complete raw missing data and do not differentiate between imputed and actual values. As a result, models may inadvertently incorporate irrelevant or deceptive information with respect to the prediction objective, thereby compromising the efficacy of downstream performance. While some methods strive to recalibrate or augment EHR embeddings after direct imputation, they often mistakenly prioritize imputed features. This misprioritization can introduce biases or inaccuracies into the model. To tackle these issues, our work resorts to indirect imputation, where we leverage prototype representations from similar patients to obtain a denser embedding. Recognizing the limitation that missing features are typically treated the same as present ones when measuring similar patients, our approach designs a feature confidence learner module. This module is sensitive to the missing feature status, enabling the model to better judge the reliability of each feature. Moreover, we propose a novel patient similarity metric that takes feature confidence into account, ensuring that evaluations are not based merely on potentially inaccurate imputed values. Consequently, our work captures dense prototype patient representations with feature-missing-aware calibration process. Comprehensive experiments demonstrate that designed model surpasses established EHR-focused models with a statistically significant improvement on MIMIC-III and MIMIC-IV datasets in-hospital mortality outcome prediction task. The code is publicly available at \url{//github.com/yhzhu99/SparseEHR} to assure the reproducibility.
In neural network training, RMSProp and ADAM remain widely favoured optimization algorithms. One of the keys to their performance lies in selecting the correct step size, which can significantly influence their effectiveness. It is worth noting that these algorithms performance can vary considerably, depending on the chosen step sizes. Additionally, questions about their theoretical convergence properties continue to be a subject of interest. In this paper, we theoretically analyze a constant stepsize version of ADAM in the non-convex setting. We show sufficient conditions for the stepsize to achieve almost sure asymptotic convergence of the gradients to zero with minimal assumptions. We also provide runtime bounds for deterministic ADAM to reach approximate criticality when working with smooth, non-convex functions.
The application of Physics-Informed Neural Networks (PINNs) is investigated for the first time in solving the one-dimensional Countercurrent spontaneous imbibition (COUCSI) problem at both early and late time (i.e., before and after the imbibition front meets the no-flow boundary). We introduce utilization of Change-of-Variables as a technique for improving performance of PINNs. We formulated the COUCSI problem in three equivalent forms by changing the independent variables. The first describes saturation as function of normalized position X and time T; the second as function of X and Y=T^0.5; and the third as a sole function of Z=X/T^0.5 (valid only at early time). The PINN model was generated using a feed-forward neural network and trained based on minimizing a weighted loss function, including the physics-informed loss term and terms corresponding to the initial and boundary conditions. All three formulations could closely approximate the correct solutions, with water saturation mean absolute errors around 0.019 and 0.009 for XT and XY formulations and 0.012 for the Z formulation at early time. The Z formulation perfectly captured the self-similarity of the system at early time. This was less captured by XT and XY formulations. The total variation of saturation was preserved in the Z formulation, and it was better preserved with XY- than XT formulation. Redefining the problem based on the physics-inspired variables reduced the non-linearity of the problem and allowed higher solution accuracies, a higher degree of loss-landscape convexity, a lower number of required collocation points, smaller network sizes, and more computationally efficient solutions.
We present a physics-informed machine-learning (PIML) approach for the approximation of slow invariant manifolds (SIMs) of singularly perturbed systems, providing functionals in an explicit form that facilitate the construction and numerical integration of reduced order models (ROMs). The proposed scheme solves a partial differential equation corresponding to the invariance equation (IE) within the Geometric Singular Perturbation Theory (GSPT) framework. For the solution of the IE, we used two neural network structures, namely feedforward neural networks (FNNs), and random projection neural networks (RPNNs), with symbolic differentiation for the computation of the gradients required for the learning process. The efficiency of our PIML method is assessed via three benchmark problems, namely the Michaelis-Menten, the target mediated drug disposition reaction mechanism, and the 3D Sel'kov model. We show that the proposed PIML scheme provides approximations, of equivalent or even higher accuracy, than those provided by other traditional GSPT-based methods, and importantly, for any practical purposes, it is not affected by the magnitude of the perturbation parameter. This is of particular importance, as there are many systems for which the gap between the fast and slow timescales is not that big, but still ROMs can be constructed. A comparison of the computational costs between symbolic, automatic and numerical approximation of the required derivatives in the learning process is also provided.
The robotic manipulation of Deformable Linear Objects (DLOs) is a vital and challenging task that is important in many practical applications. Classical model-based approaches to this problem require an accurate model to capture how robot motions affect the deformation of the DLO. Nowadays, data-driven models offer the best tradeoff between quality and computation time. This paper analyzes several learning-based 3D models of the DLO and proposes a new one based on the Transformer architecture that achieves superior accuracy, even on the DLOs of different lengths, thanks to the proposed scaling method. Moreover, we introduce a data augmentation technique, which improves the prediction performance of almost all considered DLO data-driven models. Thanks to this technique, even a simple Multilayer Perceptron (MLP) achieves close to state-of-the-art performance while being significantly faster to evaluate. In the experiments, we compare the performance of the learning-based 3D models of the DLO on several challenging datasets quantitatively and demonstrate their applicability in the task of shaping a DLO.
Recent artificial intelligence (AI) systems have reached milestones in "grand challenges" ranging from Go to protein-folding. The capability to retrieve medical knowledge, reason over it, and answer medical questions comparably to physicians has long been viewed as one such grand challenge. Large language models (LLMs) have catalyzed significant progress in medical question answering; Med-PaLM was the first model to exceed a "passing" score in US Medical Licensing Examination (USMLE) style questions with a score of 67.2% on the MedQA dataset. However, this and other prior work suggested significant room for improvement, especially when models' answers were compared to clinicians' answers. Here we present Med-PaLM 2, which bridges these gaps by leveraging a combination of base LLM improvements (PaLM 2), medical domain finetuning, and prompting strategies including a novel ensemble refinement approach. Med-PaLM 2 scored up to 86.5% on the MedQA dataset, improving upon Med-PaLM by over 19% and setting a new state-of-the-art. We also observed performance approaching or exceeding state-of-the-art across MedMCQA, PubMedQA, and MMLU clinical topics datasets. We performed detailed human evaluations on long-form questions along multiple axes relevant to clinical applications. In pairwise comparative ranking of 1066 consumer medical questions, physicians preferred Med-PaLM 2 answers to those produced by physicians on eight of nine axes pertaining to clinical utility (p < 0.001). We also observed significant improvements compared to Med-PaLM on every evaluation axis (p < 0.001) on newly introduced datasets of 240 long-form "adversarial" questions to probe LLM limitations. While further studies are necessary to validate the efficacy of these models in real-world settings, these results highlight rapid progress towards physician-level performance in medical question answering.
Knowledge plays a critical role in artificial intelligence. Recently, the extensive success of pre-trained language models (PLMs) has raised significant attention about how knowledge can be acquired, maintained, updated and used by language models. Despite the enormous amount of related studies, there still lacks a unified view of how knowledge circulates within language models throughout the learning, tuning, and application processes, which may prevent us from further understanding the connections between current progress or realizing existing limitations. In this survey, we revisit PLMs as knowledge-based systems by dividing the life circle of knowledge in PLMs into five critical periods, and investigating how knowledge circulates when it is built, maintained and used. To this end, we systematically review existing studies of each period of the knowledge life cycle, summarize the main challenges and current limitations, and discuss future directions.
As an effective strategy, data augmentation (DA) alleviates data scarcity scenarios where deep learning techniques may fail. It is widely applied in computer vision then introduced to natural language processing and achieves improvements in many tasks. One of the main focuses of the DA methods is to improve the diversity of training data, thereby helping the model to better generalize to unseen testing data. In this survey, we frame DA methods into three categories based on the diversity of augmented data, including paraphrasing, noising, and sampling. Our paper sets out to analyze DA methods in detail according to the above categories. Further, we also introduce their applications in NLP tasks as well as the challenges.
In contrast to batch learning where all training data is available at once, continual learning represents a family of methods that accumulate knowledge and learn continuously with data available in sequential order. Similar to the human learning process with the ability of learning, fusing, and accumulating new knowledge coming at different time steps, continual learning is considered to have high practical significance. Hence, continual learning has been studied in various artificial intelligence tasks. In this paper, we present a comprehensive review of the recent progress of continual learning in computer vision. In particular, the works are grouped by their representative techniques, including regularization, knowledge distillation, memory, generative replay, parameter isolation, and a combination of the above techniques. For each category of these techniques, both its characteristics and applications in computer vision are presented. At the end of this overview, several subareas, where continuous knowledge accumulation is potentially helpful while continual learning has not been well studied, are discussed.
Despite its great success, machine learning can have its limits when dealing with insufficient training data. A potential solution is the additional integration of prior knowledge into the training process which leads to the notion of informed machine learning. In this paper, we present a structured overview of various approaches in this field. We provide a definition and propose a concept for informed machine learning which illustrates its building blocks and distinguishes it from conventional machine learning. We introduce a taxonomy that serves as a classification framework for informed machine learning approaches. It considers the source of knowledge, its representation, and its integration into the machine learning pipeline. Based on this taxonomy, we survey related research and describe how different knowledge representations such as algebraic equations, logic rules, or simulation results can be used in learning systems. This evaluation of numerous papers on the basis of our taxonomy uncovers key methods in the field of informed machine learning.