亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We present a physics-informed machine-learning (PIML) approach for the approximation of slow invariant manifolds (SIMs) of singularly perturbed systems, providing functionals in an explicit form that facilitate the construction and numerical integration of reduced order models (ROMs). The proposed scheme solves a partial differential equation corresponding to the invariance equation (IE) within the Geometric Singular Perturbation Theory (GSPT) framework. For the solution of the IE, we used two neural network structures, namely feedforward neural networks (FNNs), and random projection neural networks (RPNNs), with symbolic differentiation for the computation of the gradients required for the learning process. The efficiency of our PIML method is assessed via three benchmark problems, namely the Michaelis-Menten, the target mediated drug disposition reaction mechanism, and the 3D Sel'kov model. We show that the proposed PIML scheme provides approximations, of equivalent or even higher accuracy, than those provided by other traditional GSPT-based methods, and importantly, for any practical purposes, it is not affected by the magnitude of the perturbation parameter. This is of particular importance, as there are many systems for which the gap between the fast and slow timescales is not that big, but still ROMs can be constructed. A comparison of the computational costs between symbolic, automatic and numerical approximation of the required derivatives in the learning process is also provided.

相關內容

In privacy-preserving machine learning, differentially private stochastic gradient descent (DP-SGD) performs worse than SGD due to per-sample gradient clipping and noise addition. A recent focus in private learning research is improving the performance of DP-SGD on private data by incorporating priors that are learned on real-world public data. In this work, we explore how we can improve the privacy-utility tradeoff of DP-SGD by learning priors from images generated by random processes and transferring these priors to private data. We propose DP-RandP, a three-phase approach. We attain new state-of-the-art accuracy when training from scratch on CIFAR10, CIFAR100, MedMNIST and ImageNet for a range of privacy budgets $\varepsilon \in [1, 8]$. In particular, we improve the previous best reported accuracy on CIFAR10 from $60.6 \%$ to $72.3 \%$ for $\varepsilon=1$.

Quantitative methods in Human-Robot Interaction (HRI) research have primarily relied upon randomized, controlled experiments in laboratory settings. However, such experiments are not always feasible when external validity, ethical constraints, and ease of data collection are of concern. Furthermore, as consumer robots become increasingly available, increasing amounts of real-world data will be available to HRI researchers, which prompts the need for quantative approaches tailored to the analysis of observational data. In this article, we present an alternate approach towards quantitative research for HRI researchers using methods from causal inference that can enable researchers to identify causal relationships in observational settings where randomized, controlled experiments cannot be run. We highlight different scenarios that HRI research with consumer household robots may involve to contextualize how methods from causal inference can be applied to observational HRI research. We then provide a tutorial summarizing key concepts from causal inference using a graphical model perspective and link to code examples throughout the article, which are available at //gitlab.com/causal/causal_hri. Our work paves the way for further discussion on new approaches towards observational HRI research while providing a starting point for HRI researchers to add causal inference techniques to their analytical toolbox.

Security challenges for Cloud or Fog-based machine learning services pose several concerns. Securing the underlying Cloud or Fog services is essential, as successful attacks against these services, on which machine learning applications rely, can lead to significant impairments of these applications. Because the requirements for AI applications can also be different, we differentiate according to whether they are used in the Cloud or in a Fog Computing network. This then also results in different threats or attack possibilities. For Cloud platforms, the responsibility for security can be divided between different parties. Security deficiencies at a lower level can have a direct impact on the higher level where user data is stored. While responsibilities are simpler for Fog Computing networks, by moving services to the edge of the network, we have to secure them against physical access to the devices. We conclude by outlining specific information security requirements for AI applications.

We present Epidemic Learning (EL), a simple yet powerful decentralized learning (DL) algorithm that leverages changing communication topologies to achieve faster model convergence compared to conventional DL approaches. At each round of EL, each node sends its model updates to a random sample of $s$ other nodes (in a system of $n$ nodes). We provide an extensive theoretical analysis of EL, demonstrating that its changing topology culminates in superior convergence properties compared to the state-of-the-art (static and dynamic) topologies. Considering smooth non-convex loss functions, the number of transient iterations for EL, i.e., the rounds required to achieve asymptotic linear speedup, is in $O(n^3/s^2)$ which outperforms the best-known bound $O(n^3)$ by a factor of $s^2$, indicating the benefit of randomized communication for DL. We empirically evaluate EL in a 96-node network and compare its performance with state-of-the-art DL approaches. Our results illustrate that EL converges up to $ 1.7\times$ quicker than baseline DL algorithms and attains $2.2 $\% higher accuracy for the same communication volume.

We present Consistent Assignment of Views over Random Partitions (CARP), a self-supervised clustering method for representation learning of visual features. CARP learns prototypes in an end-to-end online fashion using gradient descent without additional non-differentiable modules to solve the cluster assignment problem. CARP optimizes a new pretext task based on random partitions of prototypes that regularizes the model and enforces consistency between views' assignments. Additionally, our method improves training stability and prevents collapsed solutions in joint-embedding training. Through an extensive evaluation, we demonstrate that CARP's representations are suitable for learning downstream tasks. We evaluate CARP's representations capabilities in 17 datasets across many standard protocols, including linear evaluation, few-shot classification, k-NN, k-means, image retrieval, and copy detection. We compare CARP performance to 11 existing self-supervised methods. We extensively ablate our method and demonstrate that our proposed random partition pretext task improves the quality of the learned representations by devising multiple random classification tasks. In transfer learning tasks, CARP achieves the best performance on average against many SSL methods trained for a longer time.

Deep learning accelerators address the computational demands of Deep Neural Networks (DNNs), departing from the traditional Von Neumann execution model. They leverage specialized hardware to align with the application domain's structure. Compilers for these accelerators face distinct challenges compared to those for general-purpose processors. These challenges include exposing and managing more micro-architectural features, handling software-managed scratch pads for on-chip storage, explicitly managing data movement, and matching DNN layers with varying hardware capabilities. These complexities necessitate a new approach to compiler design, as traditional compilers mainly focused on generating fine-grained instruction sequences while abstracting micro-architecture details. This paper introduces the Architecture Covenant Graph (ACG), an abstract representation of an architectural structure's components and their programmable capabilities. By enabling the compiler to work with the ACG, it allows for adaptable compilation workflows when making changes to accelerator design, reducing the need for a complete compiler redevelopment. Codelets, which express DNN operation functionality and evolve into execution mappings on the ACG, are key to this process. The Covenant compiler efficiently targets diverse deep learning accelerators, achieving 93.8% performance compared to state-of-the-art, hand-tuned DNN layer implementations when compiling 14 DNN layers from various models on two different architectures.

This study enhances option pricing by presenting unique pricing model fractional order Black-Scholes-Merton (FOBSM) which is based on the Black-Scholes-Merton (BSM) model. The main goal is to improve the precision and authenticity of option pricing, matching them more closely with the financial landscape. The approach integrates the strengths of both the BSM and neural network (NN) with complex diffusion dynamics. This study emphasizes the need to take fractional derivatives into account when analyzing financial market dynamics. Since FOBSM captures memory characteristics in sequential data, it is better at simulating real-world systems than integer-order models. Findings reveals that in complex diffusion dynamics, this hybridization approach in option pricing improves the accuracy of price predictions. the key contribution of this work lies in the development of a novel option pricing model (FOBSM) that leverages fractional calculus and neural networks to enhance accuracy in capturing complex diffusion dynamics and memory effects in financial data.

Recent contrastive representation learning methods rely on estimating mutual information (MI) between multiple views of an underlying context. E.g., we can derive multiple views of a given image by applying data augmentation, or we can split a sequence into views comprising the past and future of some step in the sequence. Contrastive lower bounds on MI are easy to optimize, but have a strong underestimation bias when estimating large amounts of MI. We propose decomposing the full MI estimation problem into a sum of smaller estimation problems by splitting one of the views into progressively more informed subviews and by applying the chain rule on MI between the decomposed views. This expression contains a sum of unconditional and conditional MI terms, each measuring modest chunks of the total MI, which facilitates approximation via contrastive bounds. To maximize the sum, we formulate a contrastive lower bound on the conditional MI which can be approximated efficiently. We refer to our general approach as Decomposed Estimation of Mutual Information (DEMI). We show that DEMI can capture a larger amount of MI than standard non-decomposed contrastive bounds in a synthetic setting, and learns better representations in a vision domain and for dialogue generation.

Graph Neural Networks (GNNs) have received considerable attention on graph-structured data learning for a wide variety of tasks. The well-designed propagation mechanism which has been demonstrated effective is the most fundamental part of GNNs. Although most of GNNs basically follow a message passing manner, litter effort has been made to discover and analyze their essential relations. In this paper, we establish a surprising connection between different propagation mechanisms with a unified optimization problem, showing that despite the proliferation of various GNNs, in fact, their proposed propagation mechanisms are the optimal solution optimizing a feature fitting function over a wide class of graph kernels with a graph regularization term. Our proposed unified optimization framework, summarizing the commonalities between several of the most representative GNNs, not only provides a macroscopic view on surveying the relations between different GNNs, but also further opens up new opportunities for flexibly designing new GNNs. With the proposed framework, we discover that existing works usually utilize naive graph convolutional kernels for feature fitting function, and we further develop two novel objective functions considering adjustable graph kernels showing low-pass or high-pass filtering capabilities respectively. Moreover, we provide the convergence proofs and expressive power comparisons for the proposed models. Extensive experiments on benchmark datasets clearly show that the proposed GNNs not only outperform the state-of-the-art methods but also have good ability to alleviate over-smoothing, and further verify the feasibility for designing GNNs with our unified optimization framework.

Few-shot Knowledge Graph (KG) completion is a focus of current research, where each task aims at querying unseen facts of a relation given its few-shot reference entity pairs. Recent attempts solve this problem by learning static representations of entities and references, ignoring their dynamic properties, i.e., entities may exhibit diverse roles within task relations, and references may make different contributions to queries. This work proposes an adaptive attentional network for few-shot KG completion by learning adaptive entity and reference representations. Specifically, entities are modeled by an adaptive neighbor encoder to discern their task-oriented roles, while references are modeled by an adaptive query-aware aggregator to differentiate their contributions. Through the attention mechanism, both entities and references can capture their fine-grained semantic meanings, and thus render more expressive representations. This will be more predictive for knowledge acquisition in the few-shot scenario. Evaluation in link prediction on two public datasets shows that our approach achieves new state-of-the-art results with different few-shot sizes.

北京阿比特科技有限公司