亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Coin selection algorithms are a fundamental component of blockchain technology. In this paper, we present a comprehensive review of the existing coin selection algorithms utilized in unspent transaction output (UTXO)-based blockchains. We provide a list of the desired objectives and categorize existing algorithms into three types: primitive, basic, and advanced algorithms. This allows for a structured understanding of their functionalities and limitations. We also evaluate the performance of existing coin selection algorithms. The aim of this paper is to provide system researchers and developers with a concrete view of the current design landscape.

相關內容

 區塊鏈(Blockchain)是由節點參與的分布式數據庫系統,它的特點是不可更改,不可偽造,也可以將其理解為賬簿系統(ledger)。它是比特幣的一個重要概念,完整比特幣區塊鏈的副本,記錄了其代幣(token)的每一筆交易。通過這些信息,我們可以找到每一個地址,在歷史上任何一點所擁有的價值。

知識薈萃

精品入門和進階教程、論文和代碼整理等

更多

查看相關VIP內容、論文、資訊等

In this paper, we investigate the vulnerability of MDE to adversarial patches. We propose a novel \underline{S}tealthy \underline{A}dversarial \underline{A}ttacks on \underline{M}DE (SAAM) that compromises MDE by either corrupting the estimated distance or causing an object to seamlessly blend into its surroundings. Our experiments, demonstrate that the designed stealthy patch successfully causes a DNN-based MDE to misestimate the depth of objects. In fact, our proposed adversarial patch achieves a significant 60\% depth error with 99\% ratio of the affected region. Importantly, despite its adversarial nature, the patch maintains a naturalistic appearance, making it inconspicuous to human observers. We believe that this work sheds light on the threat of adversarial attacks in the context of MDE on edge devices. We hope it raises awareness within the community about the potential real-life harm of such attacks and encourages further research into developing more robust and adaptive defense mechanisms.

In this paper, we explore a practical system setting where a rack-aware storage system consists of racks, each containing a few parity checks, referred to as a rack-aware system with locality. To minimize cross-rack bandwidth in this system, we organize the repair sets of locally repairable codes into racks and investigate the problem of repairing erasures in locally repairable codes beyond the code locality. We devise two repair schemes to reduce the repair bandwidth for Tamo-Barg codes under the rack-aware model by setting each repair set as a rack. We then establish a cut-set bound for locally repairable codes under the rack-aware model with locality. Using this bound we show that our second repair scheme is optimal. Furthermore, we consider the partial-repair problem for locally repairable codes under the rack-aware model with locality, and introduce both repair schemes and bounds for this scenario.

In this paper, we identify the criteria for the selection of the minimal and most efficient covariate adjustment sets for the regression calibration method developed by Carroll, Rupert and Stefanski (CRS, 1992), used to correct bias due to continuous exposure measurement error. We utilize directed acyclic graphs to illustrate how subject matter knowledge can aid in the selection of such adjustment sets. Valid measurement error correction requires the collection of data on any (1) common causes of true exposure and outcome and (2) common causes of measurement error and outcome, in both the main study and validation study. For the CRS regression calibration method to be valid, researchers need to minimally adjust for covariate set (1) in both the measurement error model (MEM) and the outcome model and adjust for covariate set (2) at least in the MEM. In practice, we recommend including the minimal covariate adjustment set in both the MEM and the outcome model. In contrast with the regression calibration method developed by Rosner, Spiegelman and Willet, it is valid and more efficient to adjust for correlates of the true exposure or of measurement error that are not risk factors in the MEM only under CRS method. We applied the proposed covariate selection approach to the Health Professional Follow-up Study, examining the effect of fiber intake on cardiovascular incidence. In this study, we demonstrated potential issues with a data-driven approach to building the MEM that is agnostic to the structural assumptions. We extend the originally proposed estimators to settings where effect modification by a covariate is allowed. Finally, we caution against the use of the regression calibration method to calibrate the true nutrition intake using biomarkers.

In this paper, we address the problem of designing an experiment with both discrete and continuous factors under fairly general parametric statistical models. We propose a new algorithm, named ForLion, to search for optimal designs under the D-criterion. The algorithm performs an exhaustive search in a design space with mixed factors while keeping high efficiency and reducing the number of distinct experimental settings. Its optimality is guaranteed by the general equivalence theorem. We demonstrate its superiority over state-of-the-art design algorithms using real-life experiments under multinomial logistic models (MLM) and generalized linear models (GLM). Our simulation studies show that the ForLion algorithm could reduce the number of experimental settings by 25% or improve the relative efficiency of the designs by 17.5% on average. Our algorithm can help the experimenters reduce the time cost, the usage of experimental devices, and thus the total cost of their experiments while preserving high efficiencies of the designs.

Accurate branch prediction is a critical part of high performance instruction stream processing. In this paper, I present a hardware implementation of branch prediction for a RV32IM CPU, starting with static decode stage predictions and culminating in the use of BATAGE. In addition, I detail my experience writing the RTL in Hardcaml, a hardware description library for the functional programming language OCaml.

Non-IID data present a tough challenge for federated learning. In this paper, we explore a novel idea of facilitating pairwise collaborations between clients with similar data. We propose FedAMP, a new method employing federated attentive message passing to facilitate similar clients to collaborate more. We establish the convergence of FedAMP for both convex and non-convex models, and propose a heuristic method to further improve the performance of FedAMP when clients adopt deep neural networks as personalized models. Our extensive experiments on benchmark data sets demonstrate the superior performance of the proposed methods.

In this paper, we present a comprehensive review of the imbalance problems in object detection. To analyze the problems in a systematic manner, we introduce a problem-based taxonomy. Following this taxonomy, we discuss each problem in depth and present a unifying yet critical perspective on the solutions in the literature. In addition, we identify major open issues regarding the existing imbalance problems as well as imbalance problems that have not been discussed before. Moreover, in order to keep our review up to date, we provide an accompanying webpage which catalogs papers addressing imbalance problems, according to our problem-based taxonomy. Researchers can track newer studies on this webpage available at: //github.com/kemaloksuz/ObjectDetectionImbalance .

In this paper, we proposed to apply meta learning approach for low-resource automatic speech recognition (ASR). We formulated ASR for different languages as different tasks, and meta-learned the initialization parameters from many pretraining languages to achieve fast adaptation on unseen target language, via recently proposed model-agnostic meta learning algorithm (MAML). We evaluated the proposed approach using six languages as pretraining tasks and four languages as target tasks. Preliminary results showed that the proposed method, MetaASR, significantly outperforms the state-of-the-art multitask pretraining approach on all target languages with different combinations of pretraining languages. In addition, since MAML's model-agnostic property, this paper also opens new research direction of applying meta learning to more speech-related applications.

We consider an interesting problem-salient instance segmentation in this paper. Other than producing bounding boxes, our network also outputs high-quality instance-level segments. Taking into account the category-independent property of each target, we design a single stage salient instance segmentation framework, with a novel segmentation branch. Our new branch regards not only local context inside each detection window but also its surrounding context, enabling us to distinguish the instances in the same scope even with obstruction. Our network is end-to-end trainable and runs at a fast speed (40 fps when processing an image with resolution 320x320). We evaluate our approach on a publicly available benchmark and show that it outperforms other alternative solutions. We also provide a thorough analysis of the design choices to help readers better understand the functions of each part of our network. The source code can be found at \url{//github.com/RuochenFan/S4Net}.

The key issue of few-shot learning is learning to generalize. In this paper, we propose a large margin principle to improve the generalization capacity of metric based methods for few-shot learning. To realize it, we develop a unified framework to learn a more discriminative metric space by augmenting the softmax classification loss function with a large margin distance loss function for training. Extensive experiments on two state-of-the-art few-shot learning models, graph neural networks and prototypical networks, show that our method can improve the performance of existing models substantially with very little computational overhead, demonstrating the effectiveness of the large margin principle and the potential of our method.

北京阿比特科技有限公司