Tsetlin Machines (TMs) provide a fundamental shift from arithmetic-based to logic-based machine learning. Supporting convolution, they deal successfully with image classification datasets like MNIST, Fashion-MNIST, and CIFAR-2. However, the TM struggles with getting state-of-the-art performance on CIFAR-10 and CIFAR-100, representing more complex tasks. This paper introduces plug-and-play collaboration between specialized TMs, referred to as TM Composites. The collaboration relies on a TM's ability to specialize during learning and to assess its competence during inference. When teaming up, the most confident TMs make the decisions, relieving the uncertain ones. In this manner, a TM Composite becomes more competent than its members, benefiting from their specializations. The collaboration is plug-and-play in that members can be combined in any way, at any time, without fine-tuning. We implement three TM specializations in our empirical evaluation: Histogram of Gradients, Adaptive Gaussian Thresholding, and Color Thermometers. The resulting TM Composite increases accuracy on Fashion-MNIST by two percentage points, CIFAR-10 by twelve points, and CIFAR-100 by nine points, yielding new state-of-the-art results for TMs. Overall, we envision that TM Composites will enable an ultra-low energy and transparent alternative to state-of-the-art deep learning on more tasks and datasets.
Transformers have achieved great success in machine learning applications. Normalization techniques, such as Layer Normalization (LayerNorm, LN) and Root Mean Square Normalization (RMSNorm), play a critical role in accelerating and stabilizing the training of Transformers. While LayerNorm recenters and rescales input vectors, RMSNorm only rescales the vectors by their RMS value. Despite being more computationally efficient, RMSNorm may compromise the representation ability of Transformers. There is currently no consensus regarding the preferred normalization technique, as some models employ LayerNorm while others utilize RMSNorm, especially in recent large language models. It is challenging to convert Transformers with one normalization to the other type. While there is an ongoing disagreement between the two normalization types, we propose a solution to unify two mainstream Transformer architectures, Pre-LN and Pre-RMSNorm Transformers. By removing the inherent redundant mean information in the main branch of Pre-LN Transformers, we can reduce LayerNorm to RMSNorm, achieving higher efficiency. We further propose the Compressed RMSNorm (CRMSNorm) and Pre-CRMSNorm Transformer based on a lossless compression of the zero-mean vectors. We formally establish the equivalence of Pre-LN, Pre-RMSNorm, and Pre-CRMSNorm Transformer variants in both training and inference. It implies that Pre-LN Transformers can be substituted with Pre-(C)RMSNorm counterparts at almost no cost, offering the same arithmetic functionality along with free efficiency improvement. Experiments demonstrate that we can reduce the training and inference time of Pre-LN Transformers by 1% - 10%.
Clustering is a fundamental problem in unsupervised machine learning with many applications in data analysis. Popular clustering algorithms such as Lloyd's algorithm and $k$-means++ can take $\Omega(ndk)$ time when clustering $n$ points in a $d$-dimensional space (represented by an $n\times d$ matrix $X$) into $k$ clusters. In applications with moderate to large $k$, the multiplicative $k$ factor can become very expensive. We introduce a simple randomized clustering algorithm that provably runs in expected time $O(\mathrm{nnz}(X) + n\log n)$ for arbitrary $k$. Here $\mathrm{nnz}(X)$ is the total number of non-zero entries in the input dataset $X$, which is upper bounded by $nd$ and can be significantly smaller for sparse datasets. We prove that our algorithm achieves approximation ratio $\smash{\widetilde{O}(k^4)}$ on any input dataset for the $k$-means objective. We also believe that our theoretical analysis is of independent interest, as we show that the approximation ratio of a $k$-means algorithm is approximately preserved under a class of projections and that $k$-means++ seeding can be implemented in expected $O(n \log n)$ time in one dimension. Finally, we show experimentally that our clustering algorithm gives a new tradeoff between running time and cluster quality compared to previous state-of-the-art methods for these tasks.
Recently, there has been an increasing interest in automated prompt optimization based on reinforcement learning (RL). This approach offers important advantages, such as generating interpretable prompts and being compatible with black-box foundation models. However, the substantial prompt space size poses challenges for RL-based methods, often leading to suboptimal policy convergence. This paper introduces MultiPrompter, a new framework that views prompt optimization as a cooperative game between prompters which take turns composing a prompt together. Our cooperative prompt optimization effectively reduces the problem size and helps prompters learn optimal prompts. We test our method on the text-to-image task and show its ability to generate higher-quality images than baselines.
Addressing the communication bottleneck inherent in federated learning (FL), over-the-air FL (AirFL) has emerged as a promising solution, which is, however, hampered by deep fading conditions. In this paper, we propose AirFL-Mem, a novel scheme designed to mitigate the impact of deep fading by implementing a \emph{long-term} memory mechanism. Convergence bounds are provided that account for long-term memory, as well as for existing AirFL variants with short-term memory, for general non-convex objectives. The theory demonstrates that AirFL-Mem exhibits the same convergence rate of federated averaging (FedAvg) with ideal communication, while the performance of existing schemes is generally limited by error floors. The theoretical results are also leveraged to propose a novel convex optimization strategy for the truncation threshold used for power control in the presence of Rayleigh fading channels. Experimental results validate the analysis, confirming the advantages of a long-term memory mechanism for the mitigation of deep fading.
Semi-supervised learning provides an expressive framework for exploiting unlabeled data when labels are insufficient. Previous semi-supervised learning methods typically match model predictions of different data-augmented views in a single-level interaction manner, which highly relies on the quality of pseudo-labels and results in semi-supervised learning not robust. In this paper, we propose a novel SSL method called DualMatch, in which the class prediction jointly invokes feature embedding in a dual-level interaction manner. DualMatch requires consistent regularizations for data augmentation, specifically, 1) ensuring that different augmented views are regulated with consistent class predictions, and 2) ensuring that different data of one class are regulated with similar feature embeddings. Extensive experiments demonstrate the effectiveness of DualMatch. In the standard SSL setting, the proposal achieves 9% error reduction compared with SOTA methods, even in a more challenging class-imbalanced setting, the proposal can still achieve 6% error reduction. Code is available at //github.com/CWangAI/DualMatch
Causal Machine Learning (CausalML) is an umbrella term for machine learning methods that formalize the data-generation process as a structural causal model (SCM). This allows one to reason about the effects of changes to this process (i.e., interventions) and what would have happened in hindsight (i.e., counterfactuals). We categorize work in \causalml into five groups according to the problems they tackle: (1) causal supervised learning, (2) causal generative modeling, (3) causal explanations, (4) causal fairness, (5) causal reinforcement learning. For each category, we systematically compare its methods and point out open problems. Further, we review modality-specific applications in computer vision, natural language processing, and graph representation learning. Finally, we provide an overview of causal benchmarks and a critical discussion of the state of this nascent field, including recommendations for future work.
Semi-supervised learning on class-imbalanced data, although a realistic problem, has been under studied. While existing semi-supervised learning (SSL) methods are known to perform poorly on minority classes, we find that they still generate high precision pseudo-labels on minority classes. By exploiting this property, in this work, we propose Class-Rebalancing Self-Training (CReST), a simple yet effective framework to improve existing SSL methods on class-imbalanced data. CReST iteratively retrains a baseline SSL model with a labeled set expanded by adding pseudo-labeled samples from an unlabeled set, where pseudo-labeled samples from minority classes are selected more frequently according to an estimated class distribution. We also propose a progressive distribution alignment to adaptively adjust the rebalancing strength dubbed CReST+. We show that CReST and CReST+ improve state-of-the-art SSL algorithms on various class-imbalanced datasets and consistently outperform other popular rebalancing methods.
Meta reinforcement learning (meta-RL) extracts knowledge from previous tasks and achieves fast adaptation to new tasks. Despite recent progress, efficient exploration in meta-RL remains a key challenge in sparse-reward tasks, as it requires quickly finding informative task-relevant experiences in both meta-training and adaptation. To address this challenge, we explicitly model an exploration policy learning problem for meta-RL, which is separated from exploitation policy learning, and introduce a novel empowerment-driven exploration objective, which aims to maximize information gain for task identification. We derive a corresponding intrinsic reward and develop a new off-policy meta-RL framework, which efficiently learns separate context-aware exploration and exploitation policies by sharing the knowledge of task inference. Experimental evaluation shows that our meta-RL method significantly outperforms state-of-the-art baselines on various sparse-reward MuJoCo locomotion tasks and more complex sparse-reward Meta-World tasks.
This paper describes a general framework for learning Higher-Order Network Embeddings (HONE) from graph data based on network motifs. The HONE framework is highly expressive and flexible with many interchangeable components. The experimental results demonstrate the effectiveness of learning higher-order network representations. In all cases, HONE outperforms recent embedding methods that are unable to capture higher-order structures with a mean relative gain in AUC of $19\%$ (and up to $75\%$ gain) across a wide variety of networks and embedding methods.
Convolutional Neural Networks (CNNs) have gained significant traction in the field of machine learning, particularly due to their high accuracy in visual recognition. Recent works have pushed the performance of GPU implementations of CNNs to significantly improve their classification and training times. With these improvements, many frameworks have become available for implementing CNNs on both CPUs and GPUs, with no support for FPGA implementations. In this work we present a modified version of the popular CNN framework Caffe, with FPGA support. This allows for classification using CNN models and specialized FPGA implementations with the flexibility of reprogramming the device when necessary, seamless memory transactions between host and device, simple-to-use test benches, and the ability to create pipelined layer implementations. To validate the framework, we use the Xilinx SDAccel environment to implement an FPGA-based Winograd convolution engine and show that the FPGA layer can be used alongside other layers running on a host processor to run several popular CNNs (AlexNet, GoogleNet, VGG A, Overfeat). The results show that our framework achieves 50 GFLOPS across 3x3 convolutions in the benchmarks. This is achieved within a practical framework, which will aid in future development of FPGA-based CNNs.