亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We consider robust low rank matrix estimation as a trace regression when outputs are contaminated by adversaries. The adversaries are allowed to add arbitrary values to arbitrary outputs. Such values can depend on any samples. We deal with matrix compressed sensing, including lasso as a partial problem, and matrix completion, and then we obtain sharp estimation error bounds. To obtain the error bounds for different models such as matrix compressed sensing and matrix completion, we propose a simple unified approach based on a combination of the Huber loss function and the nuclear norm penalization, which is a different approach from the conventional ones. Some error bounds obtained in the present paper are sharper than the past ones.

相關內容

壓縮感知是近年來極為熱門的研究前沿,在若干應用領域中都引起矚目。 compressive sensing(CS) 又稱 compressived sensing ,compressived sample,大意是在采集信號的時候(模擬到數字),同時完成對信號壓縮之意。 與稀疏表示不同,壓縮感知關注的是如何利用信號本身所具有的稀疏性,從部分觀測樣本中恢復原信號。

CPU performance prediction, which involves forecasting the performance scores of a CPU based on its hardware characteristics during its operation, is a critical technology for computational system design and resource management in the big data era. However, this research field currently faces two significant challenges. First, collecting real-world data is challenging due to the wide variety of CPU products on the market and the highly specialized nature of relevant hardware characteristics. In the research process, this field lacks a standard dataset with unified hardware characteristics, wide data coverage, and comprehensive benchmarks. Second, existing methods based on hardware simulation models or machine learning exhibit notable shortcomings, such as lengthy simulation test cycles and low prediction accuracy. To bridge these gaps, we first collect, preprocess, and standardize historical data from the 4th Generation Intel Xeon Scalable Processors across multiple benchmark suites to create a new dataset, named PerfCastDB. Subsequently, we design a deep learning based model called Nova CPU Performance Predictor (NCPP) as the baseline for this new dataset. The NCPP network is designed based on group attention mechanism. It effectively quantifies the implicit relationships between hardware characteristics within and across groups and comprehensively models the impact of various hardware characteristics on CPU performance prediction. We conduct comparative experiments using the proposed PerfCastDB dataset. Compared to existing approaches, NCPP achieves superior evaluation results, demonstrating its effectiveness. Furthermore, we have open-sourced part of the dataset and the NCPP network code to facilitate subsequent research. The resources can be accessed at //github.com/xiaoman-liu/NCPP.

Ensuring that AI systems reliably and robustly avoid harmful or dangerous behaviours is a crucial challenge, especially for AI systems with a high degree of autonomy and general intelligence, or systems used in safety-critical contexts. In this paper, we will introduce and define a family of approaches to AI safety, which we will refer to as guaranteed safe (GS) AI. The core feature of these approaches is that they aim to produce AI systems which are equipped with high-assurance quantitative safety guarantees. This is achieved by the interplay of three core components: a world model (which provides a mathematical description of how the AI system affects the outside world), a safety specification (which is a mathematical description of what effects are acceptable), and a verifier (which provides an auditable proof certificate that the AI satisfies the safety specification relative to the world model). We outline a number of approaches for creating each of these three core components, describe the main technical challenges, and suggest a number of potential solutions to them. We also argue for the necessity of this approach to AI safety, and for the inadequacy of the main alternative approaches.

Domain-specific Entity Recognition holds significant importance in legal contexts, serving as a fundamental task that supports various applications such as question-answering systems, text summarization, machine translation, sentiment analysis, and information retrieval specifically within case law documents. Recent advancements have highlighted the efficacy of Large Language Models in natural language processing tasks, demonstrating their capability to accurately detect and classify domain-specific facts (entities) from specialized texts like clinical and financial documents. This research investigates the application of Large Language Models in identifying domain-specific entities (e.g., courts, petitioner, judge, lawyer, respondents, FIR nos.) within case law documents, with a specific focus on their aptitude for handling domain-specific language complexity and contextual variations. The study evaluates the performance of state-of-the-art Large Language Model architectures, including Large Language Model Meta AI 3, Mistral, and Gemma, in the context of extracting judicial facts tailored to Indian judicial texts. Mistral and Gemma emerged as the top-performing models, showcasing balanced precision and recall crucial for accurate entity identification. These findings confirm the value of Large Language Models in judicial documents and demonstrate how they can facilitate and quicken scientific research by producing precise, organised data outputs that are appropriate for in-depth examination.

Large Language Models (LLMs) have achieved remarkable success in various fields, but their training and finetuning require massive computation and memory, necessitating parallelism which introduces heavy communication overheads. Driven by advances in packaging, the chiplet architecture emerges as a potential solution, as it can integrate computing power, as well as utilize on-package links with better signal integrity, higher bandwidth, and lower energy consumption. However, most existing chiplet-related works focus on DNN inference. Directly porting them to LLM training introduces significantly large quantities of DRAM access and network-on-package (NoP) overheads which make state-of-the-art chiplet designs fail, highlighting a research gap. This work proposes Hecaton, a scalable and cost-effective chiplet system for LLM training and finetuning. We first provide a chiplet architecture with tailored scheduling that can largely reduce DRAM accesses. We further design an efficient distributed training method that reduces NoP communication complexity and relieves constraints on SRAM capacity and layout. Theoretical analysis shows that the entire system achieves weak scaling: as the workload and hardware resources grow proportionally, the computation-to-communication ratio remains nearly constant. Experiments with various workloads and hardware configurations verify the property, and Hecaton achieves $4.98\times$ performance improvement and $2.35\times$ energy reduction on Llama2-70B, compared to the tensor parallelism in Megatron. To the best of our knowledge, we propose the first chiplet architecture specifically used for LLM training or finetuning, with guaranteed performance regardless of the problem scale.

The uplink sum-throughput of distributed massive multiple-input-multiple-output (mMIMO) networks depends majorly on Access point (AP)-User Equipment (UE) association and power control. The AP-UE association and power control both are important problems in their own right in distributed mMIMO networks to improve scalability and reduce front-haul load of the network, and to enhance the system performance by mitigating the interference and boosting the desired signals, respectively. Unlike previous studies, which focused primarily on addressing these two problems separately, this work addresses the uplink sum-throughput maximization problem in distributed mMIMO networks by solving the joint AP-UE association and power control problem, while maintaining Quality-of-Service (QoS) requirements for each UE. To improve scalability, we present an l1-penalty function that delicately balances the trade-off between spectral efficiency (SE) and front-haul signaling load. Our proposed methodology leverages fractional programming, Lagrangian dual formation, and penalty functions to provide an elegant and effective iterative solution with guaranteed convergence. Extensive numerical simulations validate the efficacy of the proposed technique for maximizing sum-throughput while considering the joint AP-UE association and power control problem, demonstrating its superiority over approaches that address these problems individually. Furthermore, the results show that the introduced penalty function can help us effectively control the maximum front-haul load.

Face recognition technology has advanced significantly in recent years due largely to the availability of large and increasingly complex training datasets for use in deep learning models. These datasets, however, typically comprise images scraped from news sites or social media platforms and, therefore, have limited utility in more advanced security, forensics, and military applications. These applications require lower resolution, longer ranges, and elevated viewpoints. To meet these critical needs, we collected and curated the first and second subsets of a large multi-modal biometric dataset designed for use in the research and development (R&D) of biometric recognition technologies under extremely challenging conditions. Thus far, the dataset includes more than 350,000 still images and over 1,300 hours of video footage of approximately 1,000 subjects. To collect this data, we used Nikon DSLR cameras, a variety of commercial surveillance cameras, specialized long-rage R&D cameras, and Group 1 and Group 2 UAV platforms. The goal is to support the development of algorithms capable of accurately recognizing people at ranges up to 1,000 m and from high angles of elevation. These advances will include improvements to the state of the art in face recognition and will support new research in the area of whole-body recognition using methods based on gait and anthropometry. This paper describes methods used to collect and curate the dataset, and the dataset's characteristics at the current stage.

Images can convey rich semantics and induce various emotions in viewers. Recently, with the rapid advancement of emotional intelligence and the explosive growth of visual data, extensive research efforts have been dedicated to affective image content analysis (AICA). In this survey, we will comprehensively review the development of AICA in the recent two decades, especially focusing on the state-of-the-art methods with respect to three main challenges -- the affective gap, perception subjectivity, and label noise and absence. We begin with an introduction to the key emotion representation models that have been widely employed in AICA and description of available datasets for performing evaluation with quantitative comparison of label noise and dataset bias. We then summarize and compare the representative approaches on (1) emotion feature extraction, including both handcrafted and deep features, (2) learning methods on dominant emotion recognition, personalized emotion prediction, emotion distribution learning, and learning from noisy data or few labels, and (3) AICA based applications. Finally, we discuss some challenges and promising research directions in the future, such as image content and context understanding, group emotion clustering, and viewer-image interaction.

Deep Learning has implemented a wide range of applications and has become increasingly popular in recent years. The goal of multimodal deep learning is to create models that can process and link information using various modalities. Despite the extensive development made for unimodal learning, it still cannot cover all the aspects of human learning. Multimodal learning helps to understand and analyze better when various senses are engaged in the processing of information. This paper focuses on multiple types of modalities, i.e., image, video, text, audio, body gestures, facial expressions, and physiological signals. Detailed analysis of past and current baseline approaches and an in-depth study of recent advancements in multimodal deep learning applications has been provided. A fine-grained taxonomy of various multimodal deep learning applications is proposed, elaborating on different applications in more depth. Architectures and datasets used in these applications are also discussed, along with their evaluation metrics. Last, main issues are highlighted separately for each domain along with their possible future research directions.

Machine learning plays a role in many deployed decision systems, often in ways that are difficult or impossible to understand by human stakeholders. Explaining, in a human-understandable way, the relationship between the input and output of machine learning models is essential to the development of trustworthy machine-learning-based systems. A burgeoning body of research seeks to define the goals and methods of explainability in machine learning. In this paper, we seek to review and categorize research on counterfactual explanations, a specific class of explanation that provides a link between what could have happened had input to a model been changed in a particular way. Modern approaches to counterfactual explainability in machine learning draw connections to the established legal doctrine in many countries, making them appealing to fielded systems in high-impact areas such as finance and healthcare. Thus, we design a rubric with desirable properties of counterfactual explanation algorithms and comprehensively evaluate all currently-proposed algorithms against that rubric. Our rubric provides easy comparison and comprehension of the advantages and disadvantages of different approaches and serves as an introduction to major research themes in this field. We also identify gaps and discuss promising research directions in the space of counterfactual explainability.

Multi-relation Question Answering is a challenging task, due to the requirement of elaborated analysis on questions and reasoning over multiple fact triples in knowledge base. In this paper, we present a novel model called Interpretable Reasoning Network that employs an interpretable, hop-by-hop reasoning process for question answering. The model dynamically decides which part of an input question should be analyzed at each hop; predicts a relation that corresponds to the current parsed results; utilizes the predicted relation to update the question representation and the state of the reasoning process; and then drives the next-hop reasoning. Experiments show that our model yields state-of-the-art results on two datasets. More interestingly, the model can offer traceable and observable intermediate predictions for reasoning analysis and failure diagnosis, thereby allowing manual manipulation in predicting the final answer.

北京阿比特科技有限公司