亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Task-oriented communications, mostly using learning-based joint source-channel coding (JSCC), aim to design a communication-efficient edge inference system by transmitting task-relevant information to the receiver. However, only transmitting task-relevant information without introducing any redundancy may cause robustness issues in learning due to the channel variations, and the JSCC which directly maps the source data into continuous channel input symbols poses compatibility issues on existing digital communication systems. In this paper, we address these two issues by first investigating the inherent tradeoff between the informativeness of the encoded representations and the robustness to information distortion in the received representations, and then propose a task-oriented communication scheme with digital modulation, named discrete task-oriented JSCC (DT-JSCC), where the transmitter encodes the features into a discrete representation and transmits it to the receiver with the digital modulation scheme. In the DT-JSCC scheme, we develop a robust encoding framework, named robust information bottleneck (RIB), to improve the communication robustness to the channel variations, and derive a tractable variational upper bound of the RIB objective function using the variational approximation to overcome the computational intractability of mutual information. The experimental results demonstrate that the proposed DT-JSCC achieves better inference performance than the baseline methods with low communication latency, and exhibits robustness to channel variations due to the applied RIB framework.

相關內容

《計算機信息》雜志發表高質量的論文,擴大了運籌學和計算的范圍,尋求有關理論、方法、實驗、系統和應用方面的原創研究論文、新穎的調查和教程論文,以及描述新的和有用的軟件工具的論文。官網鏈接: · INFORMS · 推斷 · 有偏 · Performer ·
2023 年 6 月 23 日

Health disparity research often evaluates health outcomes across demographic subgroups. Multilevel regression and poststratification (MRP) is a popular approach for small subgroup estimation due to its ability to stabilize estimates by fitting multilevel models and to adjust for selection bias by poststratifying on auxiliary variables, which are population characteristics predictive of the analytic outcome. However, the granularity and quality of the estimates produced by MRP are limited by the availability of the auxiliary variables' joint distribution; data analysts often only have access to the marginal distributions. To overcome this limitation, we embed the estimation of population cell counts needed for poststratification into the MRP workflow: embedded MRP (EMRP). Under EMRP, we generate synthetic populations of the auxiliary variables before implementing MRP. All sources of estimation uncertainty are propagated with a fully Bayesian framework. Through simulation studies, we compare different methods and demonstrate EMRP's improvements over alternatives on the bias-variance tradeoff to yield valid subpopulation inferences of interest. As an illustration, we apply EMRP to the Longitudinal Survey of Wellbeing and estimate food insecurity prevalence among vulnerable groups in New York City. We find that all EMRP estimators can correct for the bias in classical MRP while maintaining lower standard errors and narrower confidence intervals than directly imputing with the WFPBB and design-based estimates. Performances from the EMRP estimators do not differ substantially from each other, though we would generally recommend the WFPBB-MRP for its consistently high coverage rates.

In ambient backscatter communication (AmBC) systems, passive tags connect to a reader by reflecting an ambient radio frequency (RF) signal. However, the reader may not know the channel states and RF source parameters and can experience interference. The traditional energy detector (TED) appears to be an ideal solution. However, it performs poorly under these conditions. To address this, we propose two new detectors: (1) A joint correlation-energy detector (JCED) based on the first-order correlation of the received samples and (2) An improved energy detector (IED) based on the p-th norm of the received signal vector. We compare the performance of the IED and TED under generalized noise modeled using the McLeish distribution and derive a general analytical formula for the area under the receiver operating characteristic (ROC) curves. Based on our results, both detectors outperform TED. For example, the probability of detection with a false alarm rate of 1% for JCED and IED is 14% and 5% higher, respectively, compared to TED. These gains are even higher using the direct interference cancellation (DIC) technique, with increases of 16% and 7%, respectively. Overall, our proposed detectors offer better performance than the TED, making them useful tools for improving AmBC system performance.

A Low-rank Spectral Optimization Problem (LSOP) minimizes a linear objective subject to multiple two-sided linear matrix inequalities intersected with a low-rank and spectral constrained domain set. Although solving LSOP is, in general, NP-hard, its partial convexification (i.e., replacing the domain set by its convex hull) termed "LSOP-R," is often tractable and yields a high-quality solution. This motivates us to study the strength of LSOP-R. Specifically, we derive rank bounds for any extreme point of the feasible set of LSOP-R and prove their tightness for the domain sets with different matrix spaces. The proposed rank bounds recover two well-known results in the literature from a fresh angle and also allow us to derive sufficient conditions under which the relaxation LSOP-R is equivalent to the original LSOP. To effectively solve LSOP-R, we develop a column generation algorithm with a vector-based convex pricing oracle, coupled with a rank-reduction algorithm, which ensures the output solution satisfies the theoretical rank bound. Finally, we numerically verify the strength of the LSOP-R and the efficacy of the proposed algorithms.

Epidemiologists have a growing interest in employing computational approaches to solve analytic problems, with simulation being arguably the most accessible among all approaches. While previous literature discussed the utility of simulation and demonstrated how to carry out them, few have focused on connecting underlying statistical concepts to these simulation approaches, creating gaps between theory and application. Based on the recent series of discussions on the balancing intercept, we explain the growing complexity when generalizing the balancing intercept to a wider class of simulations and revise the closed-form equation for the balancing intercept under assumptions. The discussion can broadly inform the future design of more complex simulations and emphasize the importance of applying statistical thinking in the new era of computational science.

Graph contrastive learning (GCL), as an emerging self-supervised learning technique on graphs, aims to learn representations via instance discrimination. Its performance heavily relies on graph augmentation to reflect invariant patterns that are robust to small perturbations; yet it still remains unclear about what graph invariance GCL should capture. Recent studies mainly perform topology augmentations in a uniformly random manner in the spatial domain, ignoring its influence on the intrinsic structural properties embedded in the spectral domain. In this work, we aim to find a principled way for topology augmentations by exploring the invariance of graphs from the spectral perspective. We develop spectral augmentation which guides topology augmentations by maximizing the spectral change. Extensive experiments on both graph and node classification tasks demonstrate the effectiveness of our method in self-supervised representation learning. The proposed method also brings promising generalization capability in transfer learning, and is equipped with intriguing robustness property under adversarial attacks. Our study sheds light on a general principle for graph topology augmentation.

Automated Driving Systems (ADS) have made great achievements in recent years thanks to the efforts from both academia and industry. A typical ADS is composed of multiple modules, including sensing, perception, planning and control, which brings together the latest advances in multiple domains. Despite these achievements, safety assurance of the systems is still of great significance, since the unsafe behavior of ADS can bring catastrophic consequences and unacceptable economic and social losses. Testing is an important approach to system validation for the deployment in practice; in the context of ADS, it is extremely challenging, due to the system complexity and multidisciplinarity. There has been a great deal of literature that focuses on the testing of ADS, and a number of surveys have also emerged to summarize the technical advances. However, most of these surveys focus on the system-level testing that is performed within software simulators, and thereby ignore the distinct features of individual modules. In this paper, we provide a comprehensive survey on the existing ADS testing literature, which takes into account both module-level and system-level testing. Specifically, we make the following contributions: (1) we build a threat model that reveals the potential safety threats for each module of an ADS; (2) we survey the module-level testing techniques for ADS and highlight the technical differences affected by the properties of the modules; (3) we also survey the system-level testing techniques, but we focus on empirical studies that take a bird's-eye view on the system, the problems due to the collaborations between modules, and the gaps between ADS testing in simulators and real world; (4) we identify the challenges and opportunities in ADS testing, which facilitates the future research in this field.

Multimodal learning helps to comprehensively understand the world, by integrating different senses. Accordingly, multiple input modalities are expected to boost model performance, but we actually find that they are not fully exploited even when the multimodal model outperforms its uni-modal counterpart. Specifically, in this paper we point out that existing multimodal discriminative models, in which uniform objective is designed for all modalities, could remain under-optimized uni-modal representations, caused by another dominated modality in some scenarios, e.g., sound in blowing wind event, vision in drawing picture event, etc. To alleviate this optimization imbalance, we propose on-the-fly gradient modulation to adaptively control the optimization of each modality, via monitoring the discrepancy of their contribution towards the learning objective. Further, an extra Gaussian noise that changes dynamically is introduced to avoid possible generalization drop caused by gradient modulation. As a result, we achieve considerable improvement over common fusion methods on different multimodal tasks, and this simple strategy can also boost existing multimodal methods, which illustrates its efficacy and versatility. The source code is available at \url{//github.com/GeWu-Lab/OGM-GE_CVPR2022}.

Invariant risk minimization (IRM) has recently emerged as a promising alternative for domain generalization. Nevertheless, the loss function is difficult to optimize for nonlinear classifiers and the original optimization objective could fail when pseudo-invariant features and geometric skews exist. Inspired by IRM, in this paper we propose a novel formulation for domain generalization, dubbed invariant information bottleneck (IIB). IIB aims at minimizing invariant risks for nonlinear classifiers and simultaneously mitigating the impact of pseudo-invariant features and geometric skews. Specifically, we first present a novel formulation for invariant causal prediction via mutual information. Then we adopt the variational formulation of the mutual information to develop a tractable loss function for nonlinear classifiers. To overcome the failure modes of IRM, we propose to minimize the mutual information between the inputs and the corresponding representations. IIB significantly outperforms IRM on synthetic datasets, where the pseudo-invariant features and geometric skews occur, showing the effectiveness of proposed formulation in overcoming failure modes of IRM. Furthermore, experiments on DomainBed show that IIB outperforms $13$ baselines by $0.9\%$ on average across $7$ real datasets.

Effective multi-robot teams require the ability to move to goals in complex environments in order to address real-world applications such as search and rescue. Multi-robot teams should be able to operate in a completely decentralized manner, with individual robot team members being capable of acting without explicit communication between neighbors. In this paper, we propose a novel game theoretic model that enables decentralized and communication-free navigation to a goal position. Robots each play their own distributed game by estimating the behavior of their local teammates in order to identify behaviors that move them in the direction of the goal, while also avoiding obstacles and maintaining team cohesion without collisions. We prove theoretically that generated actions approach a Nash equilibrium, which also corresponds to an optimal strategy identified for each robot. We show through extensive simulations that our approach enables decentralized and communication-free navigation by a multi-robot system to a goal position, and is able to avoid obstacles and collisions, maintain connectivity, and respond robustly to sensor noise.

The information bottleneck (IB) method is a technique for extracting information that is relevant for predicting the target random variable from the source random variable, which is typically implemented by optimizing the IB Lagrangian that balances the compression and prediction terms. However, the IB Lagrangian is hard to optimize, and multiple trials for tuning values of Lagrangian multiplier are required. Moreover, we show that the prediction performance strictly decreases as the compression gets stronger during optimizing the IB Lagrangian. In this paper, we implement the IB method from the perspective of supervised disentangling. Specifically, we introduce Disentangled Information Bottleneck (DisenIB) that is consistent on compressing source maximally without target prediction performance loss (maximum compression). Theoretical and experimental results demonstrate that our method is consistent on maximum compression, and performs well in terms of generalization, robustness to adversarial attack, out-of-distribution detection, and supervised disentangling.

北京阿比特科技有限公司