亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Stratifying factors, like age and gender, can modify the effect of treatments and exposures on risk of a studied outcome. Several effect measures, including the relative risk, hazard ratio, odds ratio, and risk difference, can be used to measure this modification. It is known that choice of effect measure may determine the presence and direction of effect-measure modification. We show that considering the opposite outcome -- for example, recovery instead of death -- may similarly influence effect-measure modification. In fact, if the relative risk for the studied outcome and the relative risk for the opposite outcome agree about the direction of effect-measure modification, then so will the two cumulative hazard ratios, the risk difference, and the odds ratio. When risks are randomly sampled from the uniform (0,1) distribution, the probability of this happening is 5/6. Disagreement is probable enough that researchers considering one relative risk should also consider the other and further discussion if they disagree. (If possible, researchers should also report estimated risks.) We provide examples through case studies on HCV, COVID-19, and bankruptcy following melanoma treatment.

相關內容

We introduce a new general-purpose approach to deep learning on 3D surfaces, based on the insight that a simple diffusion layer is highly effective for spatial communication. The resulting networks are automatically robust to changes in resolution and sampling of a surface -- a basic property which is crucial for practical applications. Our networks can be discretized on various geometric representations such as triangle meshes or point clouds, and can even be trained on one representation then applied to another. We optimize the spatial support of diffusion as a continuous network parameter ranging from purely local to totally global, removing the burden of manually choosing neighborhood sizes. The only other ingredients in the method are a multi-layer perceptron applied independently at each point, and spatial gradient features to support directional filters. The resulting networks are simple, robust, and efficient. Here, we focus primarily on triangle mesh surfaces, and demonstrate state-of-the-art results for a variety of tasks including surface classification, segmentation, and non-rigid correspondence.

An important problem in causal inference is to break down the total effect of a treatment on an outcome into different causal pathways and to quantify the causal effect in each pathway. For instance, in causal fairness, the total effect of being a male employee (i.e., treatment) constitutes its direct effect on annual income (i.e., outcome) and the indirect effect via the employee's occupation (i.e., mediator). Causal mediation analysis (CMA) is a formal statistical framework commonly used to reveal such underlying causal mechanisms. One major challenge of CMA in observational studies is handling confounders, variables that cause spurious causal relationships among treatment, mediator, and outcome. Conventional methods assume sequential ignorability that implies all confounders can be measured, which is often unverifiable in practice. This work aims to circumvent the stringent sequential ignorability assumptions and consider hidden confounders. Drawing upon proxy strategies and recent advances in deep learning, we propose to simultaneously uncover the latent variables that characterize hidden confounders and estimate the causal effects. Empirical evaluations using both synthetic and semi-synthetic datasets validate the effectiveness of the proposed method. We further show the potentials of our approach for causal fairness analysis.

What is learning? 20$^{st}$ century formalizations of learning theory -- which precipitated revolutions in artificial intelligence -- focus primarily on $\mathit{in-distribution}$ learning, that is, learning under the assumption that the training data are sampled from the same distribution as the evaluation distribution. This assumption renders these theories inadequate for characterizing 21$^{st}$ century real world data problems, which are typically characterized by evaluation distributions that differ from the training data distributions (referred to as out-of-distribution learning). We therefore make a small change to existing formal definitions of learnability by relaxing that assumption. We then introduce $\mathbf{learning\ efficiency}$ (LE) to quantify the amount a learner is able to leverage data for a given problem, regardless of whether it is an in- or out-of-distribution problem. We then define and prove the relationship between generalized notions of learnability, and show how this framework is sufficiently general to characterize transfer, multitask, meta, continual, and lifelong learning. We hope this unification helps bridge the gap between empirical practice and theoretical guidance in real world problems. Finally, because biological learning continues to outperform machine learning algorithms on certain OOD challenges, we discuss the limitations of this framework vis-\'a-vis its ability to formalize biological learning, suggesting multiple avenues for future research.

The increase in the use of mobile and wearable devices now allow dense assessment of mediating processes over time. For example, a pharmacological intervention may have an effect on smoking cessation via reductions in momentary withdrawal symptoms. We define and identify the causal direct and indirect effects in terms of potential outcomes on the mean difference and odds ratio scales, and present a method for estimating and testing the indirect effect of a randomized treatment on a distal binary variable as mediated by the nonparametric trajectory of an intensively measured longitudinal variable (e.g., from ecological momentary assessment). Coverage of a bootstrap test for the indirect effect is demonstrated via simulation. An empirical example is presented based on estimating later smoking abstinence from patterns of craving during smoking cessation treatment. We provide an R package, funmediation, to conveniently apply this technique. We conclude by discussing possible extensions to multiple mediators and directions for future research.

This paper synthesizes recent advances in the econometrics of difference-in-differences (DiD) and provides concrete recommendations for practitioners. We begin by articulating a simple set of "canonical" assumptions under which the econometrics of DiD are well-understood. We then argue that recent advances in DiD methods can be broadly classified as relaxing some components of the canonical DiD setup, with a focus on $(i)$ multiple periods and variation in treatment timing, $(ii)$ potential violations of parallel trends, or $(iii)$ alternative frameworks for inference. Our discussion highlights the different ways that the DiD literature has advanced beyond the canonical model, and helps to clarify when each of the papers will be relevant for empirical work. We conclude by discussing some promising areas for future research.

Classic machine learning methods are built on the $i.i.d.$ assumption that training and testing data are independent and identically distributed. However, in real scenarios, the $i.i.d.$ assumption can hardly be satisfied, rendering the sharp drop of classic machine learning algorithms' performances under distributional shifts, which indicates the significance of investigating the Out-of-Distribution generalization problem. Out-of-Distribution (OOD) generalization problem addresses the challenging setting where the testing distribution is unknown and different from the training. This paper serves as the first effort to systematically and comprehensively discuss the OOD generalization problem, from the definition, methodology, evaluation to the implications and future directions. Firstly, we provide the formal definition of the OOD generalization problem. Secondly, existing methods are categorized into three parts based on their positions in the whole learning pipeline, namely unsupervised representation learning, supervised model learning and optimization, and typical methods for each category are discussed in detail. We then demonstrate the theoretical connections of different categories, and introduce the commonly used datasets and evaluation metrics. Finally, we summarize the whole literature and raise some future directions for OOD generalization problem. The summary of OOD generalization methods reviewed in this survey can be found at //out-of-distribution-generalization.com.

In the domain generalization literature, a common objective is to learn representations independent of the domain after conditioning on the class label. We show that this objective is not sufficient: there exist counter-examples where a model fails to generalize to unseen domains even after satisfying class-conditional domain invariance. We formalize this observation through a structural causal model and show the importance of modeling within-class variations for generalization. Specifically, classes contain objects that characterize specific causal features, and domains can be interpreted as interventions on these objects that change non-causal features. We highlight an alternative condition: inputs across domains should have the same representation if they are derived from the same object. Based on this objective, we propose matching-based algorithms when base objects are observed (e.g., through data augmentation) and approximate the objective when objects are not observed (MatchDG). Our simple matching-based algorithms are competitive to prior work on out-of-domain accuracy for rotated MNIST, Fashion-MNIST, PACS, and Chest-Xray datasets. Our method MatchDG also recovers ground-truth object matches: on MNIST and Fashion-MNIST, top-10 matches from MatchDG have over 50% overlap with ground-truth matches.

This paper focuses on the expected difference in borrower's repayment when there is a change in the lender's credit decisions. Classical estimators overlook the confounding effects and hence the estimation error can be magnificent. As such, we propose another approach to construct the estimators such that the error can be greatly reduced. The proposed estimators are shown to be unbiased, consistent, and robust through a combination of theoretical analysis and numerical testing. Moreover, we compare the power of estimating the causal quantities between the classical estimators and the proposed estimators. The comparison is tested across a wide range of models, including linear regression models, tree-based models, and neural network-based models, under different simulated datasets that exhibit different levels of causality, different degrees of nonlinearity, and different distributional properties. Most importantly, we apply our approaches to a large observational dataset provided by a global technology firm that operates in both the e-commerce and the lending business. We find that the relative reduction of estimation error is strikingly substantial if the causal effects are accounted for correctly.

To make deliberate progress towards more intelligent and more human-like artificial systems, we need to be following an appropriate feedback signal: we need to be able to define and evaluate intelligence in a way that enables comparisons between two systems, as well as comparisons with humans. Over the past hundred years, there has been an abundance of attempts to define and measure intelligence, across both the fields of psychology and AI. We summarize and critically assess these definitions and evaluation approaches, while making apparent the two historical conceptions of intelligence that have implicitly guided them. We note that in practice, the contemporary AI community still gravitates towards benchmarking intelligence by comparing the skill exhibited by AIs and humans at specific tasks such as board games and video games. We argue that solely measuring skill at any given task falls short of measuring intelligence, because skill is heavily modulated by prior knowledge and experience: unlimited priors or unlimited training data allow experimenters to "buy" arbitrary levels of skills for a system, in a way that masks the system's own generalization power. We then articulate a new formal definition of intelligence based on Algorithmic Information Theory, describing intelligence as skill-acquisition efficiency and highlighting the concepts of scope, generalization difficulty, priors, and experience. Using this definition, we propose a set of guidelines for what a general AI benchmark should look like. Finally, we present a benchmark closely following these guidelines, the Abstraction and Reasoning Corpus (ARC), built upon an explicit set of priors designed to be as close as possible to innate human priors. We argue that ARC can be used to measure a human-like form of general fluid intelligence and that it enables fair general intelligence comparisons between AI systems and humans.

Recent studies have shown the vulnerability of reinforcement learning (RL) models in noisy settings. The sources of noises differ across scenarios. For instance, in practice, the observed reward channel is often subject to noise (e.g., when observed rewards are collected through sensors), and thus observed rewards may not be credible as a result. Also, in applications such as robotics, a deep reinforcement learning (DRL) algorithm can be manipulated to produce arbitrary errors. In this paper, we consider noisy RL problems where observed rewards by RL agents are generated with a reward confusion matrix. We call such observed rewards as perturbed rewards. We develop an unbiased reward estimator aided robust RL framework that enables RL agents to learn in noisy environments while observing only perturbed rewards. Our framework draws upon approaches for supervised learning with noisy data. The core ideas of our solution include estimating a reward confusion matrix and defining a set of unbiased surrogate rewards. We prove the convergence and sample complexity of our approach. Extensive experiments on different DRL platforms show that policies based on our estimated surrogate reward can achieve higher expected rewards, and converge faster than existing baselines. For instance, the state-of-the-art PPO algorithm is able to obtain 67.5% and 46.7% improvements in average on five Atari games, when the error rates are 10% and 30% respectively.

北京阿比特科技有限公司