亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Considering the market's competitiveness and the complexity of organizations and projects, analyzing data is crucial to decision support on software development and project management processes. These practices are essential to increase performance, reduce costs and risks of failure, and guarantee the quality of results, keeping the work organized and controlled. ITLingo-Cloud is a multi-organization and multi-workspace collaborative platform to manage and analyze data that can support translating project performance knowledge into improved decision-making. This platform allows users to quickly set up their environment, manage workspaces and technical documentation, and analyze and observe statistics to aid both technical and business decisions. ITLingo-Cloud supports multiple technologies and languages, promotes data synchronization with templates and reusable libraries, as well as automation tasks, namely automatic data extraction, automatic validation, or document automation. The usability of ITLingo-Cloud was recently evaluated with two experiments and discussed with other related approaches.

相關內容

Modern video streaming services require quality assurance of the presented audiovisual material. Quality assurance mechanisms allow streaming platforms to provide quality levels that are considered sufficient to yield user satisfaction, with the least possible amount of data transferred. A variety of measures and approaches have been developed to control video quality, e.g., by adapting it to network conditions. These include objective matrices of the quality and thresholds identified by means of subjective perceptual judgments. The former group of matrices has recently gained the attention of (multi)media researchers. They call this area of study ``Quality of Experience'' (QoE). In this paper, we present a review of QoE's theoretical models together with a discussion of their properties and implications for the field. We argue that most of them represent the bottom-up approach to modeling. Such models focus on describing as many variables as possible, but with a limited ability to investigate the causal relationship between them; therefore, the applicability of the findings in practice is limited. To advance the field, we therefore propose a structural, top-down model of video QoE that describes causal relationships among variables. We hope that our framework will facilitate designing comparable experiments in the domain.

As knowledge graph has the potential to bridge the gap between commonsense knowledge and reasoning over actionable capabilities of mobile robotic platforms, incorporating knowledge graph into robotic system attracted increasing attention in recent years. Previously, graph visualization has been used wildly by developers to make sense of knowledge representations. However, due to lacking the link between abstract knowledge of the real-world environment and the robot's actions, transitional visualization tools are incompatible for expert-user to understand, test, supervise and modify the graph-based reasoning system with the embodiment of the robots. Therefore, we developed an interface which enables robotic experts to send commands to the robot in natural language, then interface visualizes the procedures of the robot mapping the command to the functions for querying in the commonsense knowledge database, links the result to the real world instances in a 3D map and demonstrate the execution of the robot from the first-person perspective of the robot. After 3 weeks of usage of the system by robotic experts in their daily development, some feedback was collected, which provides insight for designing such systems.

The rapid development of diagnostic technologies in healthcare is leading to higher requirements for physicians to handle and integrate the heterogeneous, yet complementary data that are produced during routine practice. For instance, the personalized diagnosis and treatment planning for a single cancer patient relies on the various images (e.g., radiological, pathological, and camera images) and non-image data (e.g., clinical data and genomic data). However, such decision-making procedures can be subjective, qualitative, and have large inter-subject variabilities. With the recent advances in multi-modal deep learning technologies, an increasingly large number of efforts have been devoted to a key question: how do we extract and aggregate multi-modal information to ultimately provide more objective, quantitative computer-aided clinical decision making? This paper reviews the recent studies on dealing with such a question. Briefly, this review will include the (1) overview of current multi-modal learning workflows, (2) summarization of multi-modal fusion methods, (3) discussion of the performance, (4) applications in disease diagnosis and prognosis, and (5) challenges and future directions.

Visualization plays a vital role in making sense of complex network data. Recent studies have shown the potential of using extended reality (XR) for the immersive exploration of networks. The additional depth cues offered by XR help users perform better in certain tasks when compared to using traditional desktop setups. However, prior works on immersive network visualization rely on mostly static graph layouts to present the data to the user. This poses a problem since there is no optimal layout for all possible tasks. The choice of layout heavily depends on the type of network and the task at hand. We introduce a multi-layout approach that allows users to effectively explore hierarchical network data in immersive space. The resulting system leverages different layout techniques and interactions to efficiently use the available space in VR and provide an optimal view of the data depending on the task and the level of detail required to solve it. To evaluate our approach, we have conducted a user study comparing it against the state of the art for immersive network visualization. Participants performed tasks at varying spatial scopes. The results show that our approach outperforms the baseline in spatially focused scenarios as well as when the whole network needs to be considered.

The complexity of the data generated by (magneto)-hydrodynamic (HD/MHD) simulations requires advanced tools for their analysis and visualization. The dramatic improvements in virtual reality (VR) technologies have inspired us to seek the long-term goal of creating VR tools for scientific model analysis and visualization that would allow researchers to study and perform data analysis on their models within an immersive environment. Here, we report the results obtained at INAF-Osservatorio Astronomico di Palermo in the development of these tools, which would allow for the exploration of 3D models interactively, resulting in highly detailed analysis that cannot be performed with traditional data visualization and analysis platforms. Additionally, these VR-based tools offer the ability to produce high-impact VR content for efficient audience engagement and awareness.

Fault-tolerant distributed applications require mechanisms to recover data lost via a process failure. On modern cluster systems it is typically impractical to request replacement resources after such a failure. Therefore, applications have to continue working with the remaining resources. This requires redistributing the workload and that the non-failed processes reload data. We present an algorithmic framework and its C++ library implementation ReStore for MPI programs that enables recovery of data after process failures. By storing all required data in memory via an appropriate data distribution and replication, recovery is substantially faster than with standard checkpointing schemes that rely on a parallel file system. As the application developer can specify which data to load, we also support shrinking recovery instead of recovery using spare compute nodes. We evaluate ReStore in both controlled, isolated environments and real applications. Our experiments show loading times of lost input data in the range of milliseconds on up to 24 576 processors and a substantial speedup of the recovery time for the fault-tolerant version of a widely used bioinformatics application.

Humans often demonstrate diverse behaviors due to their personal preferences, for instance related to their individual execution style or personal margin for safety. In this paper, we consider the problem of integrating such preferences into trajectory planning for robotic manipulators. We first learn reward functions that represent the user path and motion preferences from kinesthetic demonstration. We then use a discrete-time trajectory optimization scheme to produce trajectories that adhere to both task requirements and user preferences. We go beyond the state of art by designing a feature set that captures the fundamental preferences in a manipulation task, such as timing of the motion. We further demonstrate that our method is capable of generalizing such preferences to new scenarios. We implement our algorithm on a Franka Emika 7-DoF robot arm, and validate the functionality and flexibility of our approach in a user study. The results show that non-expert users are able to teach the robot their preferences with just a few iterations of feedback.

Forecasting has always been at the forefront of decision making and planning. The uncertainty that surrounds the future is both exciting and challenging, with individuals and organisations seeking to minimise risks and maximise utilities. The large number of forecasting applications calls for a diverse set of forecasting methods to tackle real-life challenges. This article provides a non-systematic review of the theory and the practice of forecasting. We provide an overview of a wide range of theoretical, state-of-the-art models, methods, principles, and approaches to prepare, produce, organise, and evaluate forecasts. We then demonstrate how such theoretical concepts are applied in a variety of real-life contexts. We do not claim that this review is an exhaustive list of methods and applications. However, we wish that our encyclopedic presentation will offer a point of reference for the rich work that has been undertaken over the last decades, with some key insights for the future of forecasting theory and practice. Given its encyclopedic nature, the intended mode of reading is non-linear. We offer cross-references to allow the readers to navigate through the various topics. We complement the theoretical concepts and applications covered by large lists of free or open-source software implementations and publicly-available databases.

Images can convey rich semantics and induce various emotions in viewers. Recently, with the rapid advancement of emotional intelligence and the explosive growth of visual data, extensive research efforts have been dedicated to affective image content analysis (AICA). In this survey, we will comprehensively review the development of AICA in the recent two decades, especially focusing on the state-of-the-art methods with respect to three main challenges -- the affective gap, perception subjectivity, and label noise and absence. We begin with an introduction to the key emotion representation models that have been widely employed in AICA and description of available datasets for performing evaluation with quantitative comparison of label noise and dataset bias. We then summarize and compare the representative approaches on (1) emotion feature extraction, including both handcrafted and deep features, (2) learning methods on dominant emotion recognition, personalized emotion prediction, emotion distribution learning, and learning from noisy data or few labels, and (3) AICA based applications. Finally, we discuss some challenges and promising research directions in the future, such as image content and context understanding, group emotion clustering, and viewer-image interaction.

Reinforcement learning is one of the core components in designing an artificial intelligent system emphasizing real-time response. Reinforcement learning influences the system to take actions within an arbitrary environment either having previous knowledge about the environment model or not. In this paper, we present a comprehensive study on Reinforcement Learning focusing on various dimensions including challenges, the recent development of different state-of-the-art techniques, and future directions. The fundamental objective of this paper is to provide a framework for the presentation of available methods of reinforcement learning that is informative enough and simple to follow for the new researchers and academics in this domain considering the latest concerns. First, we illustrated the core techniques of reinforcement learning in an easily understandable and comparable way. Finally, we analyzed and depicted the recent developments in reinforcement learning approaches. My analysis pointed out that most of the models focused on tuning policy values rather than tuning other things in a particular state of reasoning.

北京阿比特科技有限公司