亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The finite element method is widely used in simulations of various fields. However, when considering domains whose extent differs strongly in different spatial directions a finite element simulation becomes computationally very expensive due to the large number of degrees of freedom. An example of such a domain are the cables inside of the magnets of particle accelerators. For translationally invariant domains, this work proposes a quasi-3-D method. Thereby, a 2-D finite element method with a nodal basis in the cross-section is combined with a spectral method with a wavelet basis in the longitudinal direction. Furthermore, a spectral method with a wavelet basis and an adaptive and time-dependent resolution is presented. All methods are verified. As an example the hot-spot propagation due to a quench in Rutherford cables is simulated successfully.

相關內容

Computational Fluid Dynamics (CFD) simulation by the numerical solution of the Navier-Stokes equations is an essential tool in a wide range of applications from engineering design to climate modeling. However, the computational cost and memory demand required by CFD codes may become very high for flows of practical interest, such as in aerodynamic shape optimization. This expense is associated with the complexity of the fluid flow governing equations, which include non-linear partial derivative terms that are of difficult solution, leading to long computational times and limiting the number of hypotheses that can be tested during the process of iterative design. Therefore, we propose DeepCFD: a convolutional neural network (CNN) based model that efficiently approximates solutions for the problem of non-uniform steady laminar flows. The proposed model is able to learn complete solutions of the Navier-Stokes equations, for both velocity and pressure fields, directly from ground-truth data generated using a state-of-the-art CFD code. Using DeepCFD, we found a speedup of up to 3 orders of magnitude compared to the standard CFD approach at a cost of low error rates.

In recent years there has been a resurgence of interest in our community in the shape analysis of 3D objects represented by surface meshes, their voxelized interiors, or surface point clouds. In part, this interest has been stimulated by the increased availability of RGBD cameras, and by applications of computer vision to autonomous driving, medical imaging, and robotics. In these settings, spectral coordinates have shown promise for shape representation due to their ability to incorporate both local and global shape properties in a manner that is qualitatively invariant to isometric transformations. Yet, surprisingly, such coordinates have thus far typically considered only local surface positional or derivative information. In the present article, we propose to equip spectral coordinates with medial (object width) information, so as to enrich them. The key idea is to couple surface points that share a medial ball, via the weights of the adjacency matrix. We develop a spectral feature using this idea, and the algorithms to compute it. The incorporation of object width and medial coupling has direct benefits, as illustrated by our experiments on object classification, object part segmentation, and surface point correspondence.

We present a Hermite interpolation based partial differential equation solver for Hamilton-Jacobi equations. Many Hamilton-Jacobi equations have a nonlinear dependency on the gradient, which gives rise to discontinuities in the derivatives of the solution, resulting in kinks. We built our solver with two goals in mind: 1) high order accuracy in smooth regions and 2) sharp resolution of kinks. To achieve this, we use Hermite interpolation with a smoothness sensor. The degrees-of freedom of Hermite methods are tensor-product Taylor polynomials of degree $m$ in each coordinate direction. The method uses $(m+1)^d$ degrees of freedom per node in $d$-dimensions and achieves an order of accuracy $(2m+1)$ when the solution is smooth. To obtain sharp resolution of kinks, we sense the smoothness of the solution on each cell at each timestep. If the solution is smooth, we march the interpolant forward in time with no modifications. When our method encounters a cell over which the solution is not smooth, it introduces artificial viscosity locally while proceeding normally in smooth regions. We show through numerical experiments that the solver sharply captures kinks once the solution losses continuity in the derivative while achieving $2m+1$ order accuracy in smooth regions.

Bond graph is a unified graphical approach for describing the dynamics of complex engineering and physical systems and is widely adopted in a variety of domains, such as, electrical, mechanical, medical, thermal and fluid mechanics. Traditionally, these dynamics are analyzed using paper-and-pencil proof methods and computer-based techniques. However, both of these techniques suffer from their inherent limitations, such as human-error proneness, approximations of results and enormous computational requirements. Thus, these techniques cannot be trusted for performing the bond graph based dynamical analysis of systems from the safety-critical domains like robotics and medicine. Formal methods, in particular, higher-order-logic theorem proving, can overcome the shortcomings of these traditional methods and provide an accurate analysis of these systems. It has been widely used for analyzing the dynamics of engineering and physical systems. In this paper, we propose to use higher-order-logic theorem proving for performing the bond graph based analysis of the physical systems. In particular, we provide formalization of bond graph, which mainly includes functions that allow conversion of a bond graph to its corresponding mathematical model (state-space model) and the verification of its various properties, such as, stability. To illustrate the practical effectiveness of our proposed approach, we present the formal stability analysis of a prosthetic mechatronic hand using HOL Light theorem prover. Moreover, to help non-experts in HOL, we encode our formally verified stability theorems in MATLAB to perform the stability analysis of an anthropomorphic prosthetic mechatronic hand.

We introduce ChebLieNet, a group-equivariant method on (anisotropic) manifolds. Surfing on the success of graph- and group-based neural networks, we take advantage of the recent developments in the geometric deep learning field to derive a new approach to exploit any anisotropies in data. Via discrete approximations of Lie groups, we develop a graph neural network made of anisotropic convolutional layers (Chebyshev convolutions), spatial pooling and unpooling layers, and global pooling layers. Group equivariance is achieved via equivariant and invariant operators on graphs with anisotropic left-invariant Riemannian distance-based affinities encoded on the edges. Thanks to its simple form, the Riemannian metric can model any anisotropies, both in the spatial and orientation domains. This control on anisotropies of the Riemannian metrics allows to balance equivariance (anisotropic metric) against invariance (isotropic metric) of the graph convolution layers. Hence we open the doors to a better understanding of anisotropic properties. Furthermore, we empirically prove the existence of (data-dependent) sweet spots for anisotropic parameters on CIFAR10. This crucial result is evidence of the benefice we could get by exploiting anisotropic properties in data. We also evaluate the scalability of this approach on STL10 (image data) and ClimateNet (spherical data), showing its remarkable adaptability to diverse tasks.

Computational design problems arise in a number of settings, from synthetic biology to computer architectures. In this paper, we aim to solve data-driven model-based optimization (MBO) problems, where the goal is to find a design input that maximizes an unknown objective function provided access to only a static dataset of prior experiments. Such data-driven optimization procedures are the only practical methods in many real-world domains where active data collection is expensive (e.g., when optimizing over proteins) or dangerous (e.g., when optimizing over aircraft designs). Typical methods for MBO that optimize the design against a learned model suffer from distributional shift: it is easy to find a design that "fools" the model into predicting a high value. To overcome this, we propose conservative objective models (COMs), a method that learns a model of the objective function that lower bounds the actual value of the ground-truth objective on out-of-distribution inputs, and uses it for optimization. Structurally, COMs resemble adversarial training methods used to overcome adversarial examples. COMs are simple to implement and outperform a number of existing methods on a wide range of MBO problems, including optimizing protein sequences, robot morphologies, neural network weights, and superconducting materials.

We study the use of the Wave-U-Net architecture for speech enhancement, a model introduced by Stoller et al for the separation of music vocals and accompaniment. This end-to-end learning method for audio source separation operates directly in the time domain, permitting the integrated modelling of phase information and being able to take large temporal contexts into account. Our experiments show that the proposed method improves several metrics, namely PESQ, CSIG, CBAK, COVL and SSNR, over the state-of-the-art with respect to the speech enhancement task on the Voice Bank corpus (VCTK) dataset. We find that a reduced number of hidden layers is sufficient for speech enhancement in comparison to the original system designed for singing voice separation in music. We see this initial result as an encouraging signal to further explore speech enhancement in the time-domain, both as an end in itself and as a pre-processing step to speech recognition systems.

The eigendeomposition of nearest-neighbor (NN) graph Laplacian matrices is the main computational bottleneck in spectral clustering. In this work, we introduce a highly-scalable, spectrum-preserving graph sparsification algorithm that enables to build ultra-sparse NN (u-NN) graphs with guaranteed preservation of the original graph spectrums, such as the first few eigenvectors of the original graph Laplacian. Our approach can immediately lead to scalable spectral clustering of large data networks without sacrificing solution quality. The proposed method starts from constructing low-stretch spanning trees (LSSTs) from the original graphs, which is followed by iteratively recovering small portions of "spectrally critical" off-tree edges to the LSSTs by leveraging a spectral off-tree embedding scheme. To determine the suitable amount of off-tree edges to be recovered to the LSSTs, an eigenvalue stability checking scheme is proposed, which enables to robustly preserve the first few Laplacian eigenvectors within the sparsified graph. Additionally, an incremental graph densification scheme is proposed for identifying extra edges that have been missing in the original NN graphs but can still play important roles in spectral clustering tasks. Our experimental results for a variety of well-known data sets show that the proposed method can dramatically reduce the complexity of NN graphs, leading to significant speedups in spectral clustering.

High spectral dimensionality and the shortage of annotations make hyperspectral image (HSI) classification a challenging problem. Recent studies suggest that convolutional neural networks can learn discriminative spatial features, which play a paramount role in HSI interpretation. However, most of these methods ignore the distinctive spectral-spatial characteristic of hyperspectral data. In addition, a large amount of unlabeled data remains an unexploited gold mine for efficient data use. Therefore, we proposed an integration of generative adversarial networks (GANs) and probabilistic graphical models for HSI classification. Specifically, we used a spectral-spatial generator and a discriminator to identify land cover categories of hyperspectral cubes. Moreover, to take advantage of a large amount of unlabeled data, we adopted a conditional random field to refine the preliminary classification results generated by GANs. Experimental results obtained using two commonly studied datasets demonstrate that the proposed framework achieved encouraging classification accuracy using a small number of data for training.

Image segmentation is considered to be one of the critical tasks in hyperspectral remote sensing image processing. Recently, convolutional neural network (CNN) has established itself as a powerful model in segmentation and classification by demonstrating excellent performances. The use of a graphical model such as a conditional random field (CRF) contributes further in capturing contextual information and thus improving the segmentation performance. In this paper, we propose a method to segment hyperspectral images by considering both spectral and spatial information via a combined framework consisting of CNN and CRF. We use multiple spectral cubes to learn deep features using CNN, and then formulate deep CRF with CNN-based unary and pairwise potential functions to effectively extract the semantic correlations between patches consisting of three-dimensional data cubes. Effective piecewise training is applied in order to avoid the computationally expensive iterative CRF inference. Furthermore, we introduce a deep deconvolution network that improves the segmentation masks. We also introduce a new dataset and experimented our proposed method on it along with several widely adopted benchmark datasets to evaluate the effectiveness of our method. By comparing our results with those from several state-of-the-art models, we show the promising potential of our method.

北京阿比特科技有限公司