亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We provide (high probability) bounds on the condition number of random feature matrices. In particular, we show that if the complexity ratio $\frac{N}{m}$ where $N$ is the number of neurons and $m$ is the number of data samples scales like $\log^{-3}(N)$ or $\log^{3}(m)$, then the random feature matrix is well-conditioned. This result holds without the need of regularization and relies on establishing a bound on the restricted isometry constant of the random feature matrix. In addition, we prove that the risk associated with regression problems using a random feature matrix exhibits the double descent phenomenon and that this is an effect of the double descent behavior of the condition number. The risk bounds include the underparameterized setting using the least squares problem and the overparameterized setting where using either the minimum norm interpolation problem or a sparse regression problem. For the least squares or sparse regression cases, we show that the risk decreases as $m$ and $N$ increase, even in the presence of bounded or random noise. The risk bound matches the optimal scaling in the literature and the constants in our results are explicit and independent of the dimension of the data.

相關內容

學習方法的泛化能力(Generalization Error)是由該方法學習到的模型對未知數據的預測能力,是學習方法本質上重要的性質。現實中采用最多的辦法是通過測試泛化誤差來評價學習方法的泛化能力。泛化誤差界刻畫了學習算法的經驗風險與期望風險之間偏差和收斂速度。一個機器學習的泛化誤差(Generalization Error),是一個描述學生機器在從樣品數據中學習之后,離教師機器之間的差距的函數。

We present a framework for performing regression when both covariate and response are probability distributions on a compact interval $\Omega\subset\mathbb{R}$. Our regression model is based on the theory of optimal transportation and links the conditional Fr\'echet mean of the response distribution to the covariate distribution via an optimal transport map. We define a Fr\'echet-least-squares estimator of this regression map, and establish its consistency and rate of convergence to the true map, under both full and partial observation of the regression pairs. Computation of the estimator is shown to reduce to an isotonic regression problem, and thus our regression model can be implemented with ease. We illustrate our methodology using real and simulated data.

Conditional distribution is a fundamental quantity for describing the relationship between a response and a predictor. We propose a Wasserstein generative approach to learning a conditional distribution. The proposed approach uses a conditional generator to transform a known distribution to the target conditional distribution. The conditional generator is estimated by matching a joint distribution involving the conditional generator and the target joint distribution, using the Wasserstein distance as the discrepancy measure for these joint distributions. We establish non-asymptotic error bound of the conditional sampling distribution generated by the proposed method and show that it is able to mitigate the curse of dimensionality, assuming that the data distribution is supported on a lower-dimensional set. We conduct numerical experiments to validate proposed method and illustrate its applications to conditional sample generation, nonparametric conditional density estimation, prediction uncertainty quantification, bivariate response data, image reconstruction and image generation.

In this article we study fully-connected feedforward deep ReLU ANNs with an arbitrarily large number of hidden layers and we prove convergence of the risk of the GD optimization method with random initializations in the training of such ANNs under the assumption that the unnormalized probability density function of the probability distribution of the input data of the considered supervised learning problem is piecewise polynomial, under the assumption that the target function (describing the relationship between input data and the output data) is piecewise polynomial, and under the assumption that the risk function of the considered supervised learning problem admits at least one regular global minimum. In addition, in the special situation of shallow ANNs with just one hidden layer and one-dimensional input we also verify this assumption by proving in the training of such shallow ANNs that for every Lipschitz continuous target function there exists a global minimum in the risk landscape. Finally, in the training of deep ANNs with ReLU activation we also study solutions of gradient flow (GF) differential equations and we prove that every non-divergent GF trajectory converges with a polynomial rate of convergence to a critical point (in the sense of limiting Fr\'echet subdifferentiability). Our mathematical convergence analysis builds up on tools from real algebraic geometry such as the concept of semi-algebraic functions and generalized Kurdyka-Lojasiewicz inequalities, on tools from functional analysis such as the Arzel\`a-Ascoli theorem, on tools from nonsmooth analysis such as the concept of limiting Fr\'echet subgradients, as well as on the fact that the set of realization functions of shallow ReLU ANNs with fixed architecture forms a closed subset of the set of continuous functions revealed by Petersen et al.

We design a new algorithm for solving parametric systems having finitely many complex solutions for generic values of the parameters. More precisely, let $f = (f_1, \ldots, f_m)\subset \mathbb{Q}[y][x]$ with $y = (y_1, \ldots, y_t)$ and $x = (x_1, \ldots, x_n)$, $V\subset \mathbb{C}^{t+n}$ be the algebraic set defined by $f$ and $\pi$ be the projection $(y, x) \to y$. Under the assumptions that $f$ admits finitely many complex roots for generic values of $y$ and that the ideal generated by $f$ is radical, we solve the following problem. On input $f$, we compute semi-algebraic formulas defining semi-algebraic subsets $S_1, \ldots, S_l$ of the $y$-space such that $\cup_{i=1}^l S_i$ is dense in $\mathbb{R}^t$ and the number of real points in $V\cap \pi^{-1}(\eta)$ is invariant when $\eta$ varies over each $S_i$. This algorithm exploits properties of some well chosen monomial bases in the algebra $\mathbb{Q}(y)[x]/I$ where $I$ is the ideal generated by $f$ in $\mathbb{Q}(y)[x]$ and the specialization property of the so-called Hermite matrices. This allows us to obtain compact representations of the sets $S_i$ by means of semi-algebraic formulas encoding the signature of a symmetric matrix. When $f$ satisfies extra genericity assumptions, we derive complexity bounds on the number of arithmetic operations in $\mathbb{Q}$ and the degree of the output polynomials. Let $d$ be the maximal degree of the $f_i$'s and $D = n(d-1)d^n$, we prove that, on a generic $f=(f_1,\ldots,f_n)$, one can compute those semi-algebraic formulas with $O^~( \binom{t+D}{t}2^{3t}n^{2t+1} d^{3nt+2(n+t)+1})$ operations in $\mathbb{Q}$ and that the polynomials involved have degree bounded by $D$. We report on practical experiments which illustrate the efficiency of our algorithm on generic systems and systems from applications. It allows us to solve problems which are out of reach of the state-of-the-art.

We study the transfer learning process between two linear regression problems. An important and timely special case is when the regressors are overparameterized and perfectly interpolate their training data. We examine a parameter transfer mechanism whereby a subset of the parameters of the target task solution are constrained to the values learned for a related source task. We analytically characterize the generalization error of the target task in terms of the salient factors in the transfer learning architecture, i.e., the number of examples available, the number of (free) parameters in each of the tasks, the number of parameters transferred from the source to target task, and the correlation between the two tasks. Our non-asymptotic analysis shows that the generalization error of the target task follows a two-dimensional double descent trend (with respect to the number of free parameters in each of the tasks) that is controlled by the transfer learning factors. Our analysis points to specific cases where the transfer of parameters is beneficial as a substitute for extra overparameterization (i.e., additional free parameters in the target task). Specifically, we show that the usefulness of a transfer learning setting is fragile and depends on a delicate interplay among the set of transferred parameters, the relation between the tasks, and the true solution. We also demonstrate that overparameterized transfer learning is not necessarily more beneficial when the source task is closer or identical to the target task.

Missing value imputation is crucial for real-world data science workflows. Imputation is harder in the online setting, as it requires the imputation method itself to be able to evolve over time. For practical applications, imputation algorithms should produce imputations that match the true data distribution, handle data of mixed types, including ordinal, boolean, and continuous variables, and scale to large datasets. In this work we develop a new online imputation algorithm for mixed data using the Gaussian copula. The online Gaussian copula model meets all the desiderata: its imputations match the data distribution even for mixed data, improve over its offline counterpart on the accuracy when the streaming data has a changing distribution, and on the speed (up to an order of magnitude) especially on large scale datasets. By fitting the copula model to online data, we also provide a new method to detect change points in the multivariate dependence structure with missing values. Experimental results on synthetic and real world data validate the performance of the proposed methods.

Astronomical transients are stellar objects that become temporarily brighter on various timescales and have led to some of the most significant discoveries in cosmology and astronomy. Some of these transients are the explosive deaths of stars known as supernovae while others are rare, exotic, or entirely new kinds of exciting stellar explosions. New astronomical sky surveys are observing unprecedented numbers of multi-wavelength transients, making standard approaches of visually identifying new and interesting transients infeasible. To meet this demand, we present two novel methods that aim to quickly and automatically detect anomalous transient light curves in real-time. Both methods are based on the simple idea that if the light curves from a known population of transients can be accurately modelled, any deviations from model predictions are likely anomalies. The first approach is a probabilistic neural network built using Temporal Convolutional Networks (TCNs) and the second is an interpretable Bayesian parametric model of a transient. We show that the flexibility of neural networks, the attribute that makes them such a powerful tool for many regression tasks, is what makes them less suitable for anomaly detection when compared with our parametric model.

We study the problem of training deep neural networks with Rectified Linear Unit (ReLU) activiation function using gradient descent and stochastic gradient descent. In particular, we study the binary classification problem and show that for a broad family of loss functions, with proper random weight initialization, both gradient descent and stochastic gradient descent can find the global minima of the training loss for an over-parameterized deep ReLU network, under mild assumption on the training data. The key idea of our proof is that Gaussian random initialization followed by (stochastic) gradient descent produces a sequence of iterates that stay inside a small perturbation region centering around the initial weights, in which the empirical loss function of deep ReLU networks enjoys nice local curvature properties that ensure the global convergence of (stochastic) gradient descent. Our theoretical results shed light on understanding the optimization of deep learning, and pave the way to study the optimization dynamics of training modern deep neural networks.

We show that for the problem of testing if a matrix $A \in F^{n \times n}$ has rank at most $d$, or requires changing an $\epsilon$-fraction of entries to have rank at most $d$, there is a non-adaptive query algorithm making $\widetilde{O}(d^2/\epsilon)$ queries. Our algorithm works for any field $F$. This improves upon the previous $O(d^2/\epsilon^2)$ bound (SODA'03), and bypasses an $\Omega(d^2/\epsilon^2)$ lower bound of (KDD'14) which holds if the algorithm is required to read a submatrix. Our algorithm is the first such algorithm which does not read a submatrix, and instead reads a carefully selected non-adaptive pattern of entries in rows and columns of $A$. We complement our algorithm with a matching query complexity lower bound for non-adaptive testers over any field. We also give tight bounds of $\widetilde{\Theta}(d^2)$ queries in the sensing model for which query access comes in the form of $\langle X_i, A\rangle:=tr(X_i^\top A)$; perhaps surprisingly these bounds do not depend on $\epsilon$. We next develop a novel property testing framework for testing numerical properties of a real-valued matrix $A$ more generally, which includes the stable rank, Schatten-$p$ norms, and SVD entropy. Specifically, we propose a bounded entry model, where $A$ is required to have entries bounded by $1$ in absolute value. We give upper and lower bounds for a wide range of problems in this model, and discuss connections to the sensing model above.

In this paper, we study the optimal convergence rate for distributed convex optimization problems in networks. We model the communication restrictions imposed by the network as a set of affine constraints and provide optimal complexity bounds for four different setups, namely: the function $F(\xb) \triangleq \sum_{i=1}^{m}f_i(\xb)$ is strongly convex and smooth, either strongly convex or smooth or just convex. Our results show that Nesterov's accelerated gradient descent on the dual problem can be executed in a distributed manner and obtains the same optimal rates as in the centralized version of the problem (up to constant or logarithmic factors) with an additional cost related to the spectral gap of the interaction matrix. Finally, we discuss some extensions to the proposed setup such as proximal friendly functions, time-varying graphs, improvement of the condition numbers.

北京阿比特科技有限公司