亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Machine learning (ML) models are increasingly used for high-stake applications that can greatly impact people's lives. Despite their use, these models have the potential to be biased towards certain social groups on the basis of race, gender, or ethnicity. Many prior works have attempted to mitigate this "model discrimination" by updating the training data (pre-processing), altering the model learning process (in-processing), or manipulating model output (post-processing). However, these works have not yet been extended to the realm of multi-sensitive parameters and sensitive options (MSPSO), where sensitive parameters are attributes that can be discriminated against (e.g race) and sensitive options are options within sensitive parameters (e.g black or white), thus giving them limited real-world usability. Prior work in fairness has also suffered from an accuracy-fairness tradeoff that prevents both the accuracy and fairness from being high. Moreover, previous literature has failed to provide holistic fairness metrics that work with MSPSO. In this paper, we solve all three of these problems by (a) creating a novel bias mitigation technique called DualFair and (b) developing a new fairness metric (i.e. AWI) that can handle MSPSO. Lastly, we test our novel mitigation method using a comprehensive U.S mortgage lending dataset and show that our classifier, or fair loan predictor, obtains better fairness and accuracy metrics than current state-of-the-art models.

相關內容

Federated learning involves training statistical models over remote devices such as mobile phones while keeping data localized. Training in heterogeneous and potentially massive networks introduces opportunities for privacy-preserving data analysis and diversifying these models to become more inclusive of the population. Federated learning can be viewed as a unique opportunity to bring fairness and parity to many existing models by enabling model training to happen on a diverse set of participants and on data that is generated regularly and dynamically. In this paper, we discuss the current metrics and approaches that are available to measure and evaluate fairness in the context of spatial-temporal models. We propose how these metrics and approaches can be re-defined to address the challenges that are faced in the federated learning setting.

Machine learning is increasingly used in the most diverse applications and domains, whether in healthcare, to predict pathologies, or in the financial sector to detect fraud. One of the linchpins for efficiency and accuracy in machine learning is data utility. However, when it contains personal information, full access may be restricted due to laws and regulations aiming to protect individuals' privacy. Therefore, data owners must ensure that any data shared guarantees such privacy. Removal or transformation of private information (de-identification) are among the most common techniques. Intuitively, one can anticipate that reducing detail or distorting information would result in losses for model predictive performance. However, previous work concerning classification tasks using de-identified data generally demonstrates that predictive performance can be preserved in specific applications. In this paper, we aim to evaluate the existence of a trade-off between data privacy and predictive performance in classification tasks. We leverage a large set of privacy-preserving techniques and learning algorithms to provide an assessment of re-identification ability and the impact of transformed variants on predictive performance. Unlike previous literature, we confirm that the higher the level of privacy (lower re-identification risk), the higher the impact on predictive performance, pointing towards clear evidence of a trade-off.

Decisions made by various Artificial Intelligence (AI) systems greatly influence our day-to-day lives. With the increasing use of AI systems, it becomes crucial to know that they are fair, identify the underlying biases in their decision-making, and create a standardized framework to ascertain their fairness. In this paper, we propose a novel Fairness Score to measure the fairness of a data-driven AI system and a Standard Operating Procedure (SOP) for issuing Fairness Certification for such systems. Fairness Score and audit process standardization will ensure quality, reduce ambiguity, enable comparison and improve the trustworthiness of the AI systems. It will also provide a framework to operationalise the concept of fairness and facilitate the commercial deployment of such systems. Furthermore, a Fairness Certificate issued by a designated third-party auditing agency following the standardized process would boost the conviction of the organizations in the AI systems that they intend to deploy. The Bias Index proposed in this paper also reveals comparative bias amongst the various protected attributes within the dataset. To substantiate the proposed framework, we iteratively train a model on biased and unbiased data using multiple datasets and check that the Fairness Score and the proposed process correctly identify the biases and judge the fairness.

Training datasets for machine learning often have some form of missingness. For example, to learn a model for deciding whom to give a loan, the available training data includes individuals who were given a loan in the past, but not those who were not. This missingness, if ignored, nullifies any fairness guarantee of the training procedure when the model is deployed. Using causal graphs, we characterize the missingness mechanisms in different real-world scenarios. We show conditions under which various distributions, used in popular fairness algorithms, can or can not be recovered from the training data. Our theoretical results imply that many of these algorithms can not guarantee fairness in practice. Modeling missingness also helps to identify correct design principles for fair algorithms. For example, in multi-stage settings where decisions are made in multiple screening rounds, we use our framework to derive the minimal distributions required to design a fair algorithm. Our proposed algorithm decentralizes the decision-making process and still achieves similar performance to the optimal algorithm that requires centralization and non-recoverable distributions.

As data are increasingly being stored in different silos and societies becoming more aware of data privacy issues, the traditional centralized training of artificial intelligence (AI) models is facing efficiency and privacy challenges. Recently, federated learning (FL) has emerged as an alternative solution and continue to thrive in this new reality. Existing FL protocol design has been shown to be vulnerable to adversaries within or outside of the system, compromising data privacy and system robustness. Besides training powerful global models, it is of paramount importance to design FL systems that have privacy guarantees and are resistant to different types of adversaries. In this paper, we conduct the first comprehensive survey on this topic. Through a concise introduction to the concept of FL, and a unique taxonomy covering: 1) threat models; 2) poisoning attacks and defenses against robustness; 3) inference attacks and defenses against privacy, we provide an accessible review of this important topic. We highlight the intuitions, key techniques as well as fundamental assumptions adopted by various attacks and defenses. Finally, we discuss promising future research directions towards robust and privacy-preserving federated learning.

Knowledge graphs (KGs) are of great importance to many real world applications, but they generally suffer from incomplete information in the form of missing relations between entities. Knowledge graph completion (also known as relation prediction) is the task of inferring missing facts given existing ones. Most of the existing work is proposed by maximizing the likelihood of observed instance-level triples. Not much attention, however, is paid to the ontological information, such as type information of entities and relations. In this work, we propose a type-augmented relation prediction (TaRP) method, where we apply both the type information and instance-level information for relation prediction. In particular, type information and instance-level information are encoded as prior probabilities and likelihoods of relations respectively, and are combined by following Bayes' rule. Our proposed TaRP method achieves significantly better performance than state-of-the-art methods on three benchmark datasets: FB15K, YAGO26K-906, and DB111K-174. In addition, we show that TaRP achieves significantly improved data efficiency. More importantly, the type information extracted from a specific dataset can generalize well to other datasets through the proposed TaRP model.

In many applications, such as recommender systems, online advertising, and product search, click-through rate (CTR) prediction is a critical task, because its accuracy has a direct impact on both platform revenue and user experience. In recent years, with the prevalence of deep learning, CTR prediction has been widely studied in both academia and industry, resulting in an abundance of deep CTR models. Unfortunately, there is still a lack of a standardized benchmark and uniform evaluation protocols for CTR prediction. This leads to the non-reproducible and even inconsistent experimental results among these studies. In this paper, we present an open benchmark (namely FuxiCTR) for reproducible research and provide a rigorous comparison of different models for CTR prediction. Specifically, we ran over 4,600 experiments for a total of more than 12,000 GPU hours in a uniform framework to re-evaluate 24 existing models on two widely-used datasets, Criteo and Avazu. Surprisingly, our experiments show that many models have smaller differences than expected and sometimes are even inconsistent with what reported in the literature. We believe that our benchmark could not only allow researchers to gauge the effectiveness of new models conveniently, but also share some good practices to fairly compare with the state of the arts. We will release all the code and benchmark settings.

We investigate the problem of fair recommendation in the context of two-sided online platforms, comprising customers on one side and producers on the other. Traditionally, recommendation services in these platforms have focused on maximizing customer satisfaction by tailoring the results according to the personalized preferences of individual customers. However, our investigation reveals that such customer-centric design may lead to unfair distribution of exposure among the producers, which may adversely impact their well-being. On the other hand, a producer-centric design might become unfair to the customers. Thus, we consider fairness issues that span both customers and producers. Our approach involves a novel mapping of the fair recommendation problem to a constrained version of the problem of fairly allocating indivisible goods. Our proposed FairRec algorithm guarantees at least Maximin Share (MMS) of exposure for most of the producers and Envy-Free up to One item (EF1) fairness for every customer. Extensive evaluations over multiple real-world datasets show the effectiveness of FairRec in ensuring two-sided fairness while incurring a marginal loss in the overall recommendation quality.

Developing classification algorithms that are fair with respect to sensitive attributes of the data has become an important problem due to the growing deployment of classification algorithms in various social contexts. Several recent works have focused on fairness with respect to a specific metric, modeled the corresponding fair classification problem as a constrained optimization problem, and developed tailored algorithms to solve them. Despite this, there still remain important metrics for which we do not have fair classifiers and many of the aforementioned algorithms do not come with theoretical guarantees; perhaps because the resulting optimization problem is non-convex. The main contribution of this paper is a new meta-algorithm for classification that takes as input a large class of fairness constraints, with respect to multiple non-disjoint sensitive attributes, and which comes with provable guarantees. This is achieved by first developing a meta-algorithm for a large family of classification problems with convex constraints, and then showing that classification problems with general types of fairness constraints can be reduced to those in this family. We present empirical results that show that our algorithm can achieve near-perfect fairness with respect to various fairness metrics, and that the loss in accuracy due to the imposed fairness constraints is often small. Overall, this work unifies several prior works on fair classification, presents a practical algorithm with theoretical guarantees, and can handle fairness metrics that were previously not possible.

Learning sophisticated feature interactions behind user behaviors is critical in maximizing CTR for recommender systems. Despite great progress, existing methods have a strong bias towards low- or high-order interactions, or rely on expertise feature engineering. In this paper, we show that it is possible to derive an end-to-end learning model that emphasizes both low- and high-order feature interactions. The proposed framework, DeepFM, combines the power of factorization machines for recommendation and deep learning for feature learning in a new neural network architecture. Compared to the latest Wide & Deep model from Google, DeepFM has a shared raw feature input to both its "wide" and "deep" components, with no need of feature engineering besides raw features. DeepFM, as a general learning framework, can incorporate various network architectures in its deep component. In this paper, we study two instances of DeepFM where its "deep" component is DNN and PNN respectively, for which we denote as DeepFM-D and DeepFM-P. Comprehensive experiments are conducted to demonstrate the effectiveness of DeepFM-D and DeepFM-P over the existing models for CTR prediction, on both benchmark data and commercial data. We conduct online A/B test in Huawei App Market, which reveals that DeepFM-D leads to more than 10% improvement of click-through rate in the production environment, compared to a well-engineered LR model. We also covered related practice in deploying our framework in Huawei App Market.

北京阿比特科技有限公司