亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Vision-language pretrained models have seen remarkable success, but their application to safety-critical settings is limited by their lack of interpretability. To improve the interpretability of vision-language models such as CLIP, we propose a multi-modal information bottleneck (M2IB) approach that learns latent representations that compress irrelevant information while preserving relevant visual and textual features. We demonstrate how M2IB can be applied to attribution analysis of vision-language pretrained models, increasing attribution accuracy and improving the interpretability of such models when applied to safety-critical domains such as healthcare. Crucially, unlike commonly used unimodal attribution methods, M2IB does not require ground truth labels, making it possible to audit representations of vision-language pretrained models when multiple modalities but no ground-truth data is available. Using CLIP as an example, we demonstrate the effectiveness of M2IB attribution and show that it outperforms gradient-based, perturbation-based, and attention-based attribution methods both qualitatively and quantitatively.

相關內容

《計算機信息》雜志發表高質量的論文,擴大了運籌學和計算的范圍,尋求有關理論、方法、實驗、系統和應用方面的原創研究論文、新穎的調查和教程論文,以及描述新的和有用的軟件工具的論文。官網鏈接: · MoDELS · 語言模型化 · 大語言模型 · 情景 ·
2024 年 2 月 14 日

Large language models (LLMs) have performed well on several reasoning benchmarks, including ones that test analogical reasoning abilities. However, it has been debated whether they are actually performing humanlike abstract reasoning or instead employing less general processes that rely on similarity to what has been seen in their training data. Here we investigate the generality of analogy-making abilities previously claimed for LLMs (Webb, Holyoak, & Lu, 2023). We take one set of analogy problems used to evaluate LLMs and create a set of "counterfactual" variants-versions that test the same abstract reasoning abilities but that are likely dissimilar from any pre-training data. We test humans and three GPT models on both the original and counterfactual problems, and show that, while the performance of humans remains high for all the problems, the GPT models' performance declines sharply on the counterfactual set. This work provides evidence that, despite previously reported successes of LLMs on analogical reasoning, these models lack the robustness and generality of human analogy-making.

Transformer-based models have dominated natural language processing and other areas in the last few years due to their superior (zero-shot) performance on benchmark datasets. However, these models are poorly understood due to their complexity and size. While probing-based methods are widely used to understand specific properties, the structures of the representation space are not systematically characterized; consequently, it is unclear how such models generalize and overgeneralize to new inputs beyond datasets. In this paper, based on a new gradient descent optimization method, we are able to explore the embedding space of a commonly used vision-language model. Using the Imagenette dataset, we show that while the model achieves over 99\% zero-shot classification performance, it fails systematic evaluations completely. Using a linear approximation, we provide a framework to explain the striking differences. We have also obtained similar results using a different model to support that our results are applicable to other transformer models with continuous inputs. We also propose a robust way to detect the modified images.

There are many evaluation strategies for term rewrite systems, but proving termination automatically is usually easiest for innermost rewriting. Several syntactic criteria exist when innermost termination implies full termination. We adapt these criteria to the probabilistic setting, e.g., we show when it suffices to analyze almost-sure termination (AST) w.r.t. innermost rewriting to prove full AST of probabilistic term rewrite systems (PTRSs). These criteria also apply to other notions of termination like positive AST. We implemented and evaluated our new contributions in the tool AProVE.

Fine-grained grocery object recognition is an important computer vision problem with broad applications in automatic checkout, in-store robotic navigation, and assistive technologies for the visually impaired. Existing datasets on groceries are mainly 2D images. Models trained on these datasets are limited to learning features from the regular 2D grids. While portable 3D sensors such as Kinect were commonly available for mobile phones, sensors such as LiDAR and TrueDepth, have recently been integrated into mobile phones. Despite the availability of mobile 3D sensors, there are currently no dedicated real-world large-scale benchmark 3D datasets for grocery. In addition, existing 3D datasets lack fine-grained grocery categories and have limited training samples. Furthermore, collecting data by going around the object versus the traditional photo capture makes data collection cumbersome. Thus, we introduce a large-scale grocery dataset called 3DGrocery100. It constitutes 100 classes, with a total of 87,898 3D point clouds created from 10,755 RGB-D single-view images. We benchmark our dataset on six recent state-of-the-art 3D point cloud classification models. Additionally, we also benchmark the dataset on few-shot and continual learning point cloud classification tasks. Project Page: //bigdatavision.org/3DGrocery100/.

In mixed-initiative conversational search systems, clarifying questions are used to help users who struggle to express their intentions in a single query. These questions aim to uncover user's information needs and resolve query ambiguities. We hypothesize that in scenarios where multimodal information is pertinent, the clarification process can be improved by using non-textual information. Therefore, we propose to add images to clarifying questions and formulate the novel task of asking multimodal clarifying questions in open-domain, mixed-initiative conversational search systems. To facilitate research into this task, we collect a dataset named Melon that contains over 4k multimodal clarifying questions, enriched with over 14k images. We also propose a multimodal query clarification model named Marto and adopt a prompt-based, generative fine-tuning strategy to perform the training of different stages with different prompts. Several analyses are conducted to understand the importance of multimodal contents during the query clarification phase. Experimental results indicate that the addition of images leads to significant improvements of up to 90% in retrieval performance when selecting the relevant images. Extensive analyses are also performed to show the superiority of Marto compared with discriminative baselines in terms of effectiveness and efficiency.

This paper addresses the problem of data-driven computation of controllers that are correct by design for safety-critical systems and can provably satisfy (complex) functional requirements. With a focus on continuous-space stochastic systems with parametric uncertainty, we propose a two-stage approach that decomposes the problem into a learning stage and a robust formal controller synthesis stage. The first stage utilizes available Bayesian regression results to compute robust credible sets for the true parameters of the system. For the second stage, we introduce methods for systems subject to both stochastic and parametric uncertainties. We provide simulation relations for enabling correct-by-design control refinement that are founded on coupling uncertainties of stochastic systems via sub-probability measures. The presented relations are essential for constructing abstract models that are related to not only one model but to a set of parameterized models. The results are demonstrated on three case studies, including a nonlinear and a high-dimensional system.

Conventional distributed approaches to coverage control may suffer from lack of convergence and poor performance, due to the fact that agents have limited information, especially in non-convex discrete environments. To address this issue, we extend the approach of [Marden 2016] which demonstrates how a limited degree of inter-agent communication can be exploited to overcome such pitfalls in one-dimensional discrete environments. The focus of this paper is on extending such results to general dimensional settings. We show that the extension is convergent and keeps the approximation ratio of 2, meaning that any stable solution is guaranteed to have a performance within 50% of the optimal one. The experimental results exhibit that our algorithm outperforms several state-of-the-art algorithms, and also that the runtime is scalable.

Diffusion models have enabled remarkably high-quality medical image generation, which can help mitigate the expenses of acquiring and annotating new images by supplementing small or imbalanced datasets, along with other applications. However, these are hampered by the challenge of enforcing global anatomical realism in generated images. To this end, we propose a diffusion model for anatomically-controlled medical image generation. Our model follows a multi-class anatomical segmentation mask at each sampling step and incorporates a \textit{random mask ablation} training algorithm, to enable conditioning on a selected combination of anatomical constraints while allowing flexibility in other anatomical areas. This also improves the network's learning of anatomical realism for the completely unconditional (unconstrained generation) case. Comparative evaluation on breast MRI and abdominal/neck-to-pelvis CT datasets demonstrates superior anatomical realism and input mask faithfulness over state-of-the-art models. We also offer an accessible codebase and release a dataset of generated paired breast MRIs. Our approach facilitates diverse applications, including pre-registered image generation, counterfactual scenarios, and others.

The advancement of large language models (LLMs) brings notable improvements across various applications, while simultaneously raising concerns about potential private data exposure. One notable capability of LLMs is their ability to form associations between different pieces of information, but this raises concerns when it comes to personally identifiable information (PII). This paper delves into the association capabilities of language models, aiming to uncover the factors that influence their proficiency in associating information. Our study reveals that as models scale up, their capacity to associate entities/information intensifies, particularly when target pairs demonstrate shorter co-occurrence distances or higher co-occurrence frequencies. However, there is a distinct performance gap when associating commonsense knowledge versus PII, with the latter showing lower accuracy. Despite the proportion of accurately predicted PII being relatively small, LLMs still demonstrate the capability to predict specific instances of email addresses and phone numbers when provided with appropriate prompts. These findings underscore the potential risk to PII confidentiality posed by the evolving capabilities of LLMs, especially as they continue to expand in scale and power.

Generative adversarial networks constitute a powerful approach to generative modeling. While generated samples often are indistinguishable from real data, mode-collapse may occur and there is no guarantee that they will follow the true data distribution. For scientific applications in particular, it is essential that the true distribution is well captured by the generated distribution. In this work, we propose a method to ensure that the distributions of certain generated data statistics coincide with the respective distributions of the real data. In order to achieve this, we add a new loss term to the generator loss function, which quantifies the difference between these distributions via suitable f-divergences. Kernel density estimation is employed to obtain representations of the true distributions, and to estimate the corresponding generated distributions from minibatch values at each iteration. When compared to other methods, our approach has the advantage that the complete shapes of the distributions are taken into account. We evaluate the method on a synthetic dataset and a real-world dataset and demonstrate improved performance of our approach.

北京阿比特科技有限公司