As deep learning predictive models become an integral part of a large spectrum of precision agricultural systems, a barrier to the adoption of such automated solutions is the lack of user trust in these highly complex, opaque and uncertain models. Indeed, deep neural networks are not equipped with any explicit guarantees that can be used to certify the system's performance, especially in highly varying uncontrolled environments such as the ones typically faced in computer vision for agriculture.Fortunately, certain methods developed in other communities can prove to be important for agricultural applications. This article presents the conformal prediction framework that provides valid statistical guarantees on the predictive performance of any black box prediction machine, with almost no assumptions, applied to the problem of deep visual classification of weeds and crops in real-world conditions. The framework is exposed with a focus on its practical aspects and special attention accorded to the Adaptive Prediction Sets (APS) approach that delivers marginal guarantees on the model's coverage. Marginal results are then shown to be insufficient to guarantee performance on all groups of individuals in the population as characterized by their environmental and pedo-climatic auxiliary data gathered during image acquisition.To tackle this shortcoming, group-conditional conformal approaches are presented: the ''classical'' method that consists of iteratively applying the APS procedure on all groups, and a proposed elegant reformulation and implementation of the procedure using quantile regression on group membership indicators. Empirical results showing the validity of the proposed approach are presented and compared to the marginal APS then discussed.
Training a large and state-of-the-art machine learning model typically necessitates the use of large-scale datasets, which, in turn, makes the training and parameter-tuning process expensive and time-consuming. Some researchers opt to distil information from real-world datasets into tiny and compact synthetic datasets while maintaining their ability to train a well-performing model, hence proposing a data-efficient method known as Dataset Distillation (DD). Despite recent progress in this field, existing methods still underperform and cannot effectively replace large datasets. In this paper, unlike previous methods that focus solely on improving the efficacy of student distillation, we are the first to recognize the important interplay between expert and student. We argue the significant impact of expert smoothness when employing more potent expert trajectories in subsequent dataset distillation. Based on this, we introduce the integration of clipping loss and gradient penalty to regulate the rate of parameter changes in expert trajectories. Furthermore, in response to the sensitivity exhibited towards randomly initialized variables during distillation, we propose representative initialization for synthetic dataset and balanced inner-loop loss. Finally, we present two enhancement strategies, namely intermediate matching loss and weight perturbation, to mitigate the potential occurrence of cumulative errors. We conduct extensive experiments on datasets of different scales, sizes, and resolutions. The results demonstrate that the proposed method significantly outperforms prior methods.
Federated learning (FL), as an emerging distributed machine learning paradigm, allows a mass of edge devices to collaboratively train a global model while preserving privacy. In this tutorial, we focus on FL via over-the-air computation (AirComp), which is proposed to reduce the communication overhead for FL over wireless networks at the cost of compromising in the learning performance due to model aggregation error arising from channel fading and noise. We first provide a comprehensive study on the convergence of AirComp-based FedAvg (AirFedAvg) algorithms under both strongly convex and non-convex settings with constant and diminishing learning rates in the presence of data heterogeneity. Through convergence and asymptotic analysis, we characterize the impact of aggregation error on the convergence bound and provide insights for system design with convergence guarantees. Then we derive convergence rates for AirFedAvg algorithms for strongly convex and non-convex objectives. For different types of local updates that can be transmitted by edge devices (i.e., local model, gradient, and model difference), we reveal that transmitting local model in AirFedAvg may cause divergence in the training procedure. In addition, we consider more practical signal processing schemes to improve the communication efficiency and further extend the convergence analysis to different forms of model aggregation error caused by these signal processing schemes. Extensive simulation results under different settings of objective functions, transmitted local information, and communication schemes verify the theoretical conclusions.
Increased reproducibility of machine learning research has been a driving force for dramatic improvements in learning performances. The scientific community further fosters this effort by including reproducibility ratings in reviewer forms and considering them as a crucial factor for the overall evaluation of papers. Accompanying source code is not sufficient to make a work reproducible. The shared codes should meet the ML reproducibility checklist as well. This work aims to support reproducibility evaluations of papers with source codes. We propose an end-to-end system that operates on the Readme file of the source code repositories. The system checks the compliance of a given Readme to a template proposed by a widely used platform for sharing source codes of research. Our system generates scores based on a custom function to combine section scores. We also train a hierarchical transformer model to assign a class label to a given Readme. The experimental results show that the section similarity-based system performs better than the hierarchical transformer. Moreover, it has an advantage regarding explainability since one can directly relate the score to the sections of Readme files.
Visual representation learning hold great promise for robotics, but is severely hampered by the scarcity and homogeneity of robotics datasets. Recent works address this problem by pre-training visual representations on large-scale but out-of-domain data (e.g., videos of egocentric interactions) and then transferring them to target robotics tasks. While the field is heavily focused on developing better pre-training algorithms, we find that dataset choice is just as important to this paradigm's success. After all, the representation can only learn the structures or priors present in the pre-training dataset. To this end, we flip the focus on algorithms, and instead conduct a dataset centric analysis of robotic pre-training. Our findings call into question some common wisdom in the field. We observe that traditional vision datasets (like ImageNet, Kinetics and 100 Days of Hands) are surprisingly competitive options for visuo-motor representation learning, and that the pre-training dataset's image distribution matters more than its size. Finally, we show that common simulation benchmarks are not a reliable proxy for real world performance and that simple regularization strategies can dramatically improve real world policy learning. //data4robotics.github.io
Existing deep learning based speech enhancement mainly employ a data-driven approach, which leverage large amounts of data with a variety of noise types to achieve noise removal from noisy signal. However, the high dependence on the data limits its generalization on the unseen complex noises in real-life environment. In this paper, we focus on the low-latency scenario and regard speech enhancement as a speech generation problem conditioned on the noisy signal, where we generate clean speech instead of identifying and removing noises. Specifically, we propose a conditional generative framework for speech enhancement, which models clean speech by acoustic codes of a neural speech codec and generates the speech codes conditioned on past noisy frames in an auto-regressive way. Moreover, we propose an explicit-alignment approach to align noisy frames with the generated speech tokens to improve the robustness and scalability to different input lengths. Different from other methods that leverage multiple stages to generate speech codes, we leverage a single-stage speech generation approach based on the TF-Codec neural codec to achieve high speech quality with low latency. Extensive results on both synthetic and real-recorded test set show its superiority over data-driven approaches in terms of noise robustness and temporal speech coherence.
Despite the recent progress in deep learning, most approaches still go for a silo-like solution, focusing on learning each task in isolation: training a separate neural network for each individual task. Many real-world problems, however, call for a multi-modal approach and, therefore, for multi-tasking models. Multi-task learning (MTL) aims to leverage useful information across tasks to improve the generalization capability of a model. This thesis is concerned with multi-task learning in the context of computer vision. First, we review existing approaches for MTL. Next, we propose several methods that tackle important aspects of multi-task learning. The proposed methods are evaluated on various benchmarks. The results show several advances in the state-of-the-art of multi-task learning. Finally, we discuss several possibilities for future work.
Data augmentation, the artificial creation of training data for machine learning by transformations, is a widely studied research field across machine learning disciplines. While it is useful for increasing the generalization capabilities of a model, it can also address many other challenges and problems, from overcoming a limited amount of training data over regularizing the objective to limiting the amount data used to protect privacy. Based on a precise description of the goals and applications of data augmentation (C1) and a taxonomy for existing works (C2), this survey is concerned with data augmentation methods for textual classification and aims to achieve a concise and comprehensive overview for researchers and practitioners (C3). Derived from the taxonomy, we divided more than 100 methods into 12 different groupings and provide state-of-the-art references expounding which methods are highly promising (C4). Finally, research perspectives that may constitute a building block for future work are given (C5).
Federated Learning (FL) is a decentralized machine-learning paradigm, in which a global server iteratively averages the model parameters of local users without accessing their data. User heterogeneity has imposed significant challenges to FL, which can incur drifted global models that are slow to converge. Knowledge Distillation has recently emerged to tackle this issue, by refining the server model using aggregated knowledge from heterogeneous users, other than directly averaging their model parameters. This approach, however, depends on a proxy dataset, making it impractical unless such a prerequisite is satisfied. Moreover, the ensemble knowledge is not fully utilized to guide local model learning, which may in turn affect the quality of the aggregated model. Inspired by the prior art, we propose a data-free knowledge distillation} approach to address heterogeneous FL, where the server learns a lightweight generator to ensemble user information in a data-free manner, which is then broadcasted to users, regulating local training using the learned knowledge as an inductive bias. Empirical studies powered by theoretical implications show that, our approach facilitates FL with better generalization performance using fewer communication rounds, compared with the state-of-the-art.
There recently has been a surge of interest in developing a new class of deep learning (DL) architectures that integrate an explicit time dimension as a fundamental building block of learning and representation mechanisms. In turn, many recent results show that topological descriptors of the observed data, encoding information on the shape of the dataset in a topological space at different scales, that is, persistent homology of the data, may contain important complementary information, improving both performance and robustness of DL. As convergence of these two emerging ideas, we propose to enhance DL architectures with the most salient time-conditioned topological information of the data and introduce the concept of zigzag persistence into time-aware graph convolutional networks (GCNs). Zigzag persistence provides a systematic and mathematically rigorous framework to track the most important topological features of the observed data that tend to manifest themselves over time. To integrate the extracted time-conditioned topological descriptors into DL, we develop a new topological summary, zigzag persistence image, and derive its theoretical stability guarantees. We validate the new GCNs with a time-aware zigzag topological layer (Z-GCNETs), in application to traffic forecasting and Ethereum blockchain price prediction. Our results indicate that Z-GCNET outperforms 13 state-of-the-art methods on 4 time series datasets.
The canonical approach to video-and-language learning (e.g., video question answering) dictates a neural model to learn from offline-extracted dense video features from vision models and text features from language models. These feature extractors are trained independently and usually on tasks different from the target domains, rendering these fixed features sub-optimal for downstream tasks. Moreover, due to the high computational overload of dense video features, it is often difficult (or infeasible) to plug feature extractors directly into existing approaches for easy finetuning. To provide a remedy to this dilemma, we propose a generic framework ClipBERT that enables affordable end-to-end learning for video-and-language tasks, by employing sparse sampling, where only a single or a few sparsely sampled short clips from a video are used at each training step. Experiments on text-to-video retrieval and video question answering on six datasets demonstrate that ClipBERT outperforms (or is on par with) existing methods that exploit full-length videos, suggesting that end-to-end learning with just a few sparsely sampled clips is often more accurate than using densely extracted offline features from full-length videos, proving the proverbial less-is-more principle. Videos in the datasets are from considerably different domains and lengths, ranging from 3-second generic domain GIF videos to 180-second YouTube human activity videos, showing the generalization ability of our approach. Comprehensive ablation studies and thorough analyses are provided to dissect what factors lead to this success. Our code is publicly available at //github.com/jayleicn/ClipBERT