As deep neural networks continue to be used in critical domains, concerns over their security have emerged. Deep learning models are vulnerable to backdoor attacks due to the lack of transparency. A poisoned backdoor model may perform normally in routine environments, but exhibit malicious behavior when the input contains a trigger. Current research on backdoor attacks focuses on improving the stealthiness of triggers, and most approaches require strong attacker capabilities, such as knowledge of the model structure or control over the training process. These attacks are impractical since in most cases the attacker's capabilities are limited. Additionally, the issue of model robustness has not received adequate attention. For instance, model distillation is commonly used to streamline model size as the number of parameters grows exponentially, and most of previous backdoor attacks failed after model distillation; the image augmentation operations can destroy the trigger and thus disable the backdoor. This study explores the implementation of black-box backdoor attacks within capability constraints. An attacker can carry out such attacks by acting as either an image annotator or an image provider, without involvement in the training process or knowledge of the target model's structure. Through the design of a backdoor trigger, our attack remains effective after model distillation and image augmentation, making it more threatening and practical. Our experimental results demonstrate that our method achieves a high attack success rate in black-box scenarios and evades state-of-the-art backdoor defenses.
Achieving coordination between humans and artificial intelligence in scenarios involving previously unencountered humans remains a substantial obstacle within Zero-Shot Human-AI Coordination, which aims to develop AI agents capable of efficiently working alongside previously unknown human teammates. Traditional algorithms have aimed to collaborate with humans by optimizing fixed objectives within a population, fostering diversity in strategies and behaviors. However, these techniques may lead to learning loss and an inability to cooperate with specific strategies within the population, a phenomenon named cooperative incompatibility. To mitigate this issue, we introduce the Cooperative Open-ended LEarning (COLE) framework, which formulates open-ended objectives in cooperative games with two players using perspectives of graph theory to evaluate and pinpoint the cooperative capacity of each strategy. We put forth a practical algorithm incorporating insights from game theory and graph theory, e.g., Shapley Value and Centrality. We also show that COLE could effectively overcome the cooperative incompatibility from theoretical and empirical analysis. Subsequently, we created an online Overcooked human-AI experiment platform, the COLE platform, which enables easy customization of questionnaires, model weights, and other aspects. Utilizing the COLE platform, we enlist 130 participants for human experiments. Our findings reveal a preference for our approach over state-of-the-art methods using a variety of subjective metrics. Moreover, objective experimental outcomes in the Overcooked game environment indicate that our method surpasses existing ones when coordinating with previously unencountered AI agents and the human proxy model. Our code and demo are publicly available at //sites.google.com/view/cole-2023.
In this work, besides improving prediction accuracy, we study whether personalization could bring robustness benefits to backdoor attacks. We conduct the first study of backdoor attacks in the pFL framework, testing 4 widely used backdoor attacks against 6 pFL methods on benchmark datasets FEMNIST and CIFAR-10, a total of 600 experiments. The study shows that pFL methods with partial model-sharing can significantly boost robustness against backdoor attacks. In contrast, pFL methods with full model-sharing do not show robustness. To analyze the reasons for varying robustness performances, we provide comprehensive ablation studies on different pFL methods. Based on our findings, we further propose a lightweight defense method, Simple-Tuning, which empirically improves defense performance against backdoor attacks. We believe that our work could provide both guidance for pFL application in terms of its robustness and offer valuable insights to design more robust FL methods in the future. We open-source our code to establish the first benchmark for black-box backdoor attacks in pFL: //github.com/alibaba/FederatedScope/tree/backdoor-bench.
In recent years, with the successful application of DNN in fields such as NLP and CV, its security has also received widespread attention. (Author) proposed the method of backdoor attack in Badnet. Switch implanted backdoor into the model by poisoning the training samples. The model with backdoor did not exhibit any abnormalities on the normal validation sample set, but in the input with trigger, they were mistakenly classified as the attacker's designated category or randomly classified as a different category from the ground truth, This attack method seriously threatens the normal application of DNN in real life, such as autonomous driving, object detection, etc.This article proposes a new method to combat backdoor attacks. We refer to the features in the area covered by the trigger as trigger features, and the remaining areas as normal features. By introducing prerequisite calculation conditions during the training process, these conditions have little impact on normal features and trigger features, and can complete the training of a standard backdoor model. The model trained under these prerequisite calculation conditions can, In the verification set D'val with the same premise calculation conditions, the performance is consistent with that of the ordinary backdoor model. However, in the verification set Dval without the premise calculation conditions, the verification accuracy decreases very little (7%~12%), while the attack success rate (ASR) decreases from 90% to about 8%.Author call this method Prerequisite Transformation(PT).
Invisible watermarks safeguard images' copyrights by embedding hidden messages detectable by owners. It also prevents people from misusing images, especially those generated by AI models. Malicious adversaries can violate these rights by removing the watermarks. In order to remove watermarks without damaging the visual quality, the adversary needs to erase them while retaining the essential information in the image. This is analogous to the encoding and decoding process of generative autoencoders, especially variational autoencoders (VAEs) and diffusion models. We propose a framework using generative autoencoders to remove invisible watermarks and test it using VAEs and diffusions. Our results reveal that, even without specific training, off-the-shelf Stable Diffusion effectively removes most watermarks, surpassing all current attackers. The result underscores the vulnerabilities in existing watermarking schemes and calls for more robust methods for copyright protection.
The rise of powerful large language models (LLMs) brings about tremendous opportunities for innovation but also looming risks for individuals and society at large. We have reached a pivotal moment for ensuring that LLMs and LLM-infused applications are developed and deployed responsibly. However, a central pillar of responsible AI -- transparency -- is largely missing from the current discourse around LLMs. It is paramount to pursue new approaches to provide transparency for LLMs, and years of research at the intersection of AI and human-computer interaction (HCI) highlight that we must do so with a human-centered perspective: Transparency is fundamentally about supporting appropriate human understanding, and this understanding is sought by different stakeholders with different goals in different contexts. In this new era of LLMs, we must develop and design approaches to transparency by considering the needs of stakeholders in the emerging LLM ecosystem, the novel types of LLM-infused applications being built, and the new usage patterns and challenges around LLMs, all while building on lessons learned about how people process, interact with, and make use of information. We reflect on the unique challenges that arise in providing transparency for LLMs, along with lessons learned from HCI and responsible AI research that has taken a human-centered perspective on AI transparency. We then lay out four common approaches that the community has taken to achieve transparency -- model reporting, publishing evaluation results, providing explanations, and communicating uncertainty -- and call out open questions around how these approaches may or may not be applied to LLMs. We hope this provides a starting point for discussion and a useful roadmap for future research.
In the seller-buyer setting on machine learning models, the seller generates different copies based on the original model and distributes them to different buyers, such that adversarial samples generated on one buyer's copy would likely not work on other copies. A known approach achieves this using attractor-based rewriter which injects different attractors to different copies. This induces different adversarial regions in different copies, making adversarial samples generated on one copy not replicable on others. In this paper, we focus on a scenario where multiple malicious buyers collude to attack. We first give two formulations and conduct empirical studies to analyze effectiveness of collusion attack under different assumptions on the attacker's capabilities and properties of the attractors. We observe that existing attractor-based methods do not effectively mislead the colluders in the sense that adversarial samples found are influenced more by the original model instead of the attractors as number of colluders increases. Based on this observation, we propose using adaptive attractors whose weight is guided by a U-shape curve to cover the shortfalls. Experimentation results show that when using our approach, the attack success rate of a collusion attack converges to around 15% even when lots of copies are applied for collusion. In contrast, when using the existing attractor-based rewriter with fixed weight, the attack success rate increases linearly with the number of copies used for collusion.
Covert communication has become an important area of research in computer security. It involves hiding specific information on a carrier for message transmission and is often used to transmit private data, military secrets, and even malware. In deep learning, many methods have been developed for hiding information in models to achieve covert communication. However, these methods are not applicable to federated learning, where model aggregation invalidates the exact information embedded in the model by the client. To address this problem, we propose a novel method for covert communication in federated learning based on the poisoning attack. Our approach achieves 100% accuracy in covert message transmission between two clients and is shown to be both stealthy and robust through extensive experiments. However, existing defense methods are limited in their effectiveness against our attack scheme, highlighting the urgent need for new protection methods to be developed. Our study emphasizes the necessity of research in covert communication and serves as a foundation for future research in federated learning attacks and defenses.
As data are increasingly being stored in different silos and societies becoming more aware of data privacy issues, the traditional centralized training of artificial intelligence (AI) models is facing efficiency and privacy challenges. Recently, federated learning (FL) has emerged as an alternative solution and continue to thrive in this new reality. Existing FL protocol design has been shown to be vulnerable to adversaries within or outside of the system, compromising data privacy and system robustness. Besides training powerful global models, it is of paramount importance to design FL systems that have privacy guarantees and are resistant to different types of adversaries. In this paper, we conduct the first comprehensive survey on this topic. Through a concise introduction to the concept of FL, and a unique taxonomy covering: 1) threat models; 2) poisoning attacks and defenses against robustness; 3) inference attacks and defenses against privacy, we provide an accessible review of this important topic. We highlight the intuitions, key techniques as well as fundamental assumptions adopted by various attacks and defenses. Finally, we discuss promising future research directions towards robust and privacy-preserving federated learning.
Backdoor attack intends to embed hidden backdoor into deep neural networks (DNNs), such that the attacked model performs well on benign samples, whereas its prediction will be maliciously changed if the hidden backdoor is activated by the attacker-defined trigger. Backdoor attack could happen when the training process is not fully controlled by the user, such as training on third-party datasets or adopting third-party models, which poses a new and realistic threat. Although backdoor learning is an emerging and rapidly growing research area, its systematic review, however, remains blank. In this paper, we present the first comprehensive survey of this realm. We summarize and categorize existing backdoor attacks and defenses based on their characteristics, and provide a unified framework for analyzing poisoning-based backdoor attacks. Besides, we also analyze the relation between backdoor attacks and the relevant fields ($i.e.,$ adversarial attack and data poisoning), and summarize the benchmark datasets. Finally, we briefly outline certain future research directions relying upon reviewed works.
Deep Learning algorithms have achieved the state-of-the-art performance for Image Classification and have been used even in security-critical applications, such as biometric recognition systems and self-driving cars. However, recent works have shown those algorithms, which can even surpass the human capabilities, are vulnerable to adversarial examples. In Computer Vision, adversarial examples are images containing subtle perturbations generated by malicious optimization algorithms in order to fool classifiers. As an attempt to mitigate these vulnerabilities, numerous countermeasures have been constantly proposed in literature. Nevertheless, devising an efficient defense mechanism has proven to be a difficult task, since many approaches have already shown to be ineffective to adaptive attackers. Thus, this self-containing paper aims to provide all readerships with a review of the latest research progress on Adversarial Machine Learning in Image Classification, however with a defender's perspective. Here, novel taxonomies for categorizing adversarial attacks and defenses are introduced and discussions about the existence of adversarial examples are provided. Further, in contrast to exisiting surveys, it is also given relevant guidance that should be taken into consideration by researchers when devising and evaluating defenses. Finally, based on the reviewed literature, it is discussed some promising paths for future research.