亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Considering the case where the response variable is a categorical variable and the predictor is a random function, two novel functional sufficient dimensional reduction (FSDR) methods are proposed based on mutual information and square loss mutual information. Compared to the classical FSDR methods, such as functional sliced inverse regression and functional sliced average variance estimation, the proposed methods are appealing because they are capable of estimating multiple effective dimension reduction directions in the case of a relatively small number of categories, especially for the binary response. Moreover, the proposed methods do not require the restrictive linear conditional mean assumption and the constant covariance assumption. They avoid the inverse problem of the covariance operator which is often encountered in the functional sufficient dimension reduction. The functional principal component analysis with truncation be used as a regularization mechanism. Under some mild conditions, the statistical consistency of the proposed methods is established. It is demonstrated that the two methods are competitive compared with some existing FSDR methods by simulations and real data analyses.

相關內容

A novel method for noise reduction in the setting of curve time series with error contamination is proposed, based on extending the framework of functional principal component analysis (FPCA). We employ the underlying, finite-dimensional dynamics of the functional time series to separate the serially dependent dynamical part of the observed curves from the noise. Upon identifying the subspaces of the signal and idiosyncratic components, we construct a projection of the observed curve time series along the noise subspace, resulting in an estimate of the underlying denoised curves. This projection is optimal in the sense that it minimizes the mean integrated squared error. By applying our method to similated and real data, we show the denoising estimator is consistent and outperforms existing denoising techniques. Furthermore, we show it can be used as a pre-processing step to improve forecasting.

The multivariate adaptive regression spline (MARS) is one of the popular estimation methods for nonparametric multivariate regressions. However, as MARS is based on marginal splines, to incorporate interactions of covariates, products of the marginal splines must be used, which leads to an unmanageable number of basis functions when the order of interaction is high and results in low estimation efficiency. In this paper, we improve the performance of MARS by using linear combinations of the covariates which achieve sufficient dimension reduction. The special basis functions of MARS facilitate calculation of gradients of the regression function, and estimation of the linear combinations is obtained via eigen-analysis of the outer-product of the gradients. Under some technical conditions, the asymptotic theory is established for the proposed estimation method. Numerical studies including both simulation and empirical applications show its effectiveness in dimension reduction and improvement over MARS and other commonly-used nonparametric methods in regression estimation and prediction.

Regression analysis based on many covariates is becoming increasingly common. However, when the number of covariates $p$ is of the same order as the number of observations $n$, statistical protocols like maximum likelihood estimation of regression and nuisance parameters become unreliable due to overfitting. Overfitting typically leads to systematic estimation biases, and to increased estimator variances. It is crucial to be able to correctly quantify these effects, for inference and prediction purposes. In literature, several methods have been proposed to overcome overfitting bias or adjust estimates. The vast majority of these focus on the regression parameters only, either via empirical regularization methods or by expansion for small ratios $p/n$. This failure to correctly estimate also the nuisance parameters may lead to significant errors in outcome predictions. In this paper we use the leave one out method to derive the compact set of non-linear equations for the overfitting biases of maximum likelihood (ML) estimators in parametric regression models, as obtained previously using the replica method. We show that these equations enable one to correct regression and nuisance parameter estimators, and make them asymptotically unbiased. To illustrate the theory we performed simulation studies for multiple regression models. In all cases we find excellent agreement between theory and simulations.

The Hidden Markov Model (HMM) is one of the most widely used statistical models for sequential data analysis. One of the key reasons for this versatility is the ability of HMM to deal with missing data. However, standard HMM learning algorithms rely crucially on the assumption that the positions of the missing observations \emph{within the observation sequence} are known. In the natural sciences, where this assumption is often violated, special variants of HMM, commonly known as Silent-state HMMs (SHMMs), are used. Despite their widespread use, these algorithms strongly rely on specific structural assumptions of the underlying chain, such as acyclicity, thus limiting the applicability of these methods. Moreover, even in the acyclic case, it has been shown that these methods can lead to poor reconstruction. In this paper we consider the general problem of learning an HMM from data with unknown missing observation locations. We provide reconstruction algorithms that do not require any assumptions about the structure of the underlying chain, and can also be used with limited prior knowledge, unlike SHMM. We evaluate and compare the algorithms in a variety of scenarios, measuring their reconstruction precision, and robustness under model miss-specification. Notably, we show that under proper specifications one can reconstruct the process dynamics as well as if the missing observations positions were known.

In a variety of applications, including nonparametric instrumental variable (NPIV) analysis, proximal causal inference under unmeasured confounding, and missing-not-at-random data with shadow variables, we are interested in inference on a continuous linear functional (e.g., average causal effects) of nuisance function (e.g., NPIV regression) defined by conditional moment restrictions. These nuisance functions are generally weakly identified, in that the conditional moment restrictions can be severely ill-posed as well as admit multiple solutions. This is sometimes resolved by imposing strong conditions that imply the function can be estimated at rates that make inference on the functional possible. In this paper, we study a novel condition for the functional to be strongly identified even when the nuisance function is not; that is, the functional is amenable to asymptotically-normal estimation at $\sqrt{n}$-rates. The condition implies the existence of debiasing nuisance functions, and we propose penalized minimax estimators for both the primary and debiasing nuisance functions. The proposed nuisance estimators can accommodate flexible function classes, and importantly they can converge to fixed limits determined by the penalization regardless of the identifiability of the nuisances. We use the penalized nuisance estimators to form a debiased estimator for the functional of interest and prove its asymptotic normality under generic high-level conditions, which provide for asymptotically valid confidence intervals. We also illustrate our method in a novel partially linear proximal causal inference problem and a partially linear instrumental variable regression problem.

The purpose of this work is to study an optimal control problem for a semilinear elliptic partial differential equation with a linear combination of Dirac measures as a forcing term; the control variable corresponds to the amplitude of such singular sources. We analyze the existence of optimal solutions and derive first and, necessary and sufficient, second order optimality conditions. We develop a solution technique that discretizes the state and adjoint equations with continuous piecewise linear finite elements; the control variable is already discrete. We analyze the convergence properties of discretizations and obtain, in two dimensions, an a priori error estimate for the underlying approximation of an optimal control variable.

Imbalanced data poses a significant challenge in classification as model performance is affected by insufficient learning from minority classes. Balancing methods are often used to address this problem. However, such techniques can lead to problems such as overfitting or loss of information. This study addresses a more challenging aspect of balancing methods - their impact on model behavior. To capture these changes, Explainable Artificial Intelligence tools are used to compare models trained on datasets before and after balancing. In addition to the variable importance method, this study uses the partial dependence profile and accumulated local effects techniques. Real and simulated datasets are tested, and an open-source Python package edgaro is developed to facilitate this analysis. The results obtained show significant changes in model behavior due to balancing methods, which can lead to biased models toward a balanced distribution. These findings confirm that balancing analysis should go beyond model performance comparisons to achieve higher reliability of machine learning models. Therefore, we propose a new method performance gain plot for informed data balancing strategy to make an optimal selection of balancing method by analyzing the measure of change in model behavior versus performance gain.

The Gaussian graphical model (GGM) incorporates an undirected graph to represent the conditional dependence between variables, with the precision matrix encoding partial correlation between pair of variables given the others. To achieve flexible and accurate estimation and inference of GGM, we propose the novel method FLAG, which utilizes the random effects model for pairwise conditional regression to estimate the precision matrix and applies statistical tests to recover the graph. Compared with existing methods, FLAG has several unique advantages: (i) it provides accurate estimation without sparsity assumptions on the precision matrix, (ii) it allows for element-wise inference of the precision matrix, (iii) it achieves computational efficiency by developing an efficient PX-EM algorithm and a MM algorithm accelerated with low-rank updates, and (iv) it enables joint estimation of multiple graphs using FLAG-Meta or FLAG-CA. The proposed methods are evaluated using various simulation settings and real data applications, including gene expression in the human brain, term association in university websites, and stock prices in the U.S. financial market. The results demonstrate that FLAG and its extensions provide accurate precision estimation and graph recovery.

Quantifying treatment effect heterogeneity is a crucial task in many areas of causal inference, e.g. optimal treatment allocation and estimation of subgroup effects. We study the problem of estimating the level sets of the conditional average treatment effect (CATE), identified under the no-unmeasured-confounders assumption. Given a user-specified threshold, the goal is to estimate the set of all units for whom the treatment effect exceeds that threshold. For example, if the cutoff is zero, the estimand is the set of all units who would benefit from receiving treatment. Assigning treatment just to this set represents the optimal treatment rule that maximises the mean population outcome. Similarly, cutoffs greater than zero represent optimal rules under resource constraints. The level set estimator that we study follows the plug-in principle and consists of simply thresholding a good estimator of the CATE. While many CATE estimators have been recently proposed and analysed, how their properties relate to those of the corresponding level set estimators remains unclear. Our first goal is thus to fill this gap by deriving the asymptotic properties of level set estimators depending on which estimator of the CATE is used. Next, we identify a minimax optimal estimator in a model where the CATE, the propensity score and the outcome model are Holder-smooth of varying orders. We consider data generating processes that satisfy a margin condition governing the probability of observing units for whom the CATE is close to the threshold. We investigate the performance of the estimators in simulations and illustrate our methods on a dataset used to study the effects on mortality of laparoscopic vs open surgery in the treatment of various conditions of the colon.

Graphs are important data representations for describing objects and their relationships, which appear in a wide diversity of real-world scenarios. As one of a critical problem in this area, graph generation considers learning the distributions of given graphs and generating more novel graphs. Owing to their wide range of applications, generative models for graphs, which have a rich history, however, are traditionally hand-crafted and only capable of modeling a few statistical properties of graphs. Recent advances in deep generative models for graph generation is an important step towards improving the fidelity of generated graphs and paves the way for new kinds of applications. This article provides an extensive overview of the literature in the field of deep generative models for graph generation. Firstly, the formal definition of deep generative models for the graph generation and the preliminary knowledge are provided. Secondly, taxonomies of deep generative models for both unconditional and conditional graph generation are proposed respectively; the existing works of each are compared and analyzed. After that, an overview of the evaluation metrics in this specific domain is provided. Finally, the applications that deep graph generation enables are summarized and five promising future research directions are highlighted.

北京阿比特科技有限公司