Facility management, which concerns the administration, operations, and mainte-nance of buildings, is a sector undergoing significant changes while becoming digitalized and data driven. In facility management sector, companies seek to ex-tract value from data about their buildings. As a consequence, craftsmen, such as janitors, are becoming involved in data curation. Data curation refers to activities related to cleaning, assembling, setting up, and stewarding data to make them fit existing templates. Craftsmen in facility management, despite holding a pivotal role for successful data curation in the domain, are understudied and disregarded. To remedy this, our holistic case study investigates how janitors' data curation practices shape the data being produced in three facility management organiza-tions. Our findings illustrate the unfortunate that janitors are treated more like a sensor than a human data curator. This treatment makes them less engaged in data curation, and hence do not engage in a much necessary correction of essential fa-cility data. We apply the conceptual lens of invisible work - work that blends into the background and is taken for granted - to explain why this happens and how data comes to be. The findings also confirm the usefulness of a previously pro-posed analytical framework by using it to interpret data curation practices within facility management. The paper contributes to practitioners by proposing training and education in data curation.
The next generation of the Internet of Things (IoT) facilitates the integration of the notion of social networking into smart objects (i.e., things) in a bid to establish the social network of interconnected objects. This integration has led to the evolution of a promising and emerging paradigm of Social Internet of Things (SIoT), wherein the smart objects act as social objects and intelligently impersonate the social behaviour similar to that of humans. These social objects are capable of establishing social relationships with the other objects in the network and can utilize these relationships for service discovery. Trust plays a significant role to achieve the common goal of trustworthy collaboration and cooperation among the objects and provide systems' credibility and reliability. In SIoT, an untrustworthy object can disrupt the basic functionality of a service by delivering malicious messages and adversely affect the quality and reliability of the service. In this survey, we present a holistic view of trustworthiness management for SIoT. The essence of trust in various disciplines has been discussed along with the Trust in SIoT followed by a detailed study on trust management components in SIoT. Furthermore, we analyzed and compared the trust management schemes by primarily categorizing them into four groups in terms of their strengths, limitations, trust management components employed in each of the referred trust management schemes, and the performance of these studies vis-a-vis numerous trust evaluation dimensions. Finally, we have discussed the future research directions of the emerging paradigm of SIoT particularly for trustworthiness management in SIoT.
The future robots are expected to work in a shared physical space with humans [1], however, the presence of humans leads to a dynamic environment that is challenging for mobile robots to navigate. The path planning algorithms designed to navigate a collision free path in complex human environments are often tested in real environments due to the lack of simulation frameworks. This paper identifies key requirements for an ideal simulator for this task, evaluates existing simulation frameworks and most importantly, it identifies the challenges and limitations of the existing simulation techniques. First and foremost, we recognize that the simulators needed for the purpose of testing mobile robots designed for human environments are unique as they must model realistic pedestrian behavior in addition to the modelling of mobile robots. Our study finds that Pedsim_ros [2] and a more recent SocNavBench framework [3] are the only two 3D simulation frameworks that meet most of the key requirements defined in our paper. In summary, we identify the need for developing more simulators that offer an ability to create realistic 3D pedestrian rich virtual environments along with the flexibility of designing complex robots and their sensor models from scratch.
As consensus across the various published AI ethics principles is approached, a gap remains between high-level principles and practical techniques that can be readily adopted to design and develop responsible AI systems. We examine the practices and experiences of researchers and engineers from Australia's national scientific research agency (CSIRO), who are involved in designing and developing AI systems for a range of purposes. Semi-structured interviews were used to examine how the practices of the participants relate to and align with a set of high-level AI ethics principles proposed by the Australian Government. The principles comprise: Privacy Protection & Security, Reliability & Safety, Transparency & Explainability, Fairness, Contestability, Accountability, Human-centred Values, and Human, Social & Environmental Wellbeing. The insights of the researchers and engineers as well as the challenges that arose for them in the practical application of the principles are examined. Finally, we propose a set of organisational responses (learning, process, practice, strategy, policy) to support the implementation of high-level AI ethics principles into practice.
It is imperative for all stakeholders that digital forensics investigations produce reliable results to ensure the field delivers a positive contribution to the pursuit of justice across the globe. Some aspects of these investigations are inevitably contingent on trust, however this is not always explicitly considered or critically evaluated. Erroneously treating features of the investigation as trusted can be enormously damaging to the overall reliability of an investigations findings as well as the confidence that external stakeholders can have in it. As an example, digital crime scenes can be manipulated by tampering with the digital artefacts left on devices, yet recent studies have shown that efforts to detect occurrences of this are rare and argue that this leaves digital forensics investigations vulnerable to accusations of inaccuracy. In this paper a new approach to digital forensics is considered based on the concept of Zero Trust, an increasingly popular design in network security. Zero Trust describes the practitioner mindset and principles upon which the reliance on trust in network components is eliminated in favour of dynamic verification of network interactions. An initial definition of Zero Trust Digital Forensics will be proposed and then a specific example considered showing how this strategy can be applied to digital forensic investigations to mitigate against the specific risk of evidence tampering. A definition of Zero Trust Digital Forensics is proposed, specifically that it is a strategy adopted by investigators whereby each aspect of an investigation is assumed to be unreliable until verified. A new principle will be introduced, namely the multifaceted verification of digital artefacts that can be used by practitioners who wish to adopt a Zero Trust Digital Forensics strategy during their investigations...
Data processing and analytics are fundamental and pervasive. Algorithms play a vital role in data processing and analytics where many algorithm designs have incorporated heuristics and general rules from human knowledge and experience to improve their effectiveness. Recently, reinforcement learning, deep reinforcement learning (DRL) in particular, is increasingly explored and exploited in many areas because it can learn better strategies in complicated environments it is interacting with than statically designed algorithms. Motivated by this trend, we provide a comprehensive review of recent works focusing on utilizing DRL to improve data processing and analytics. First, we present an introduction to key concepts, theories, and methods in DRL. Next, we discuss DRL deployment on database systems, facilitating data processing and analytics in various aspects, including data organization, scheduling, tuning, and indexing. Then, we survey the application of DRL in data processing and analytics, ranging from data preparation, natural language processing to healthcare, fintech, etc. Finally, we discuss important open challenges and future research directions of using DRL in data processing and analytics.
With the recent advances in A.I. methodologies and their application to medical imaging, there has been an explosion of related research programs utilizing these techniques to produce state-of-the-art classification performance. Ultimately, these research programs culminate in submission of their work for consideration in peer reviewed journals. To date, the criteria for acceptance vs. rejection is often subjective; however, reproducible science requires reproducible review. The Machine Learning Education Sub-Committee of SIIM has identified a knowledge gap and a serious need to establish guidelines for reviewing these studies. Although there have been several recent papers with this goal, this present work is written from the machine learning practitioners standpoint. In this series, the committee will address the best practices to be followed in an A.I.-based study and present the required sections in terms of examples and discussion of what should be included to make the studies cohesive, reproducible, accurate, and self-contained. This first entry in the series focuses on the task of image classification. Elements such as dataset curation, data pre-processing steps, defining an appropriate reference standard, data partitioning, model architecture and training are discussed. The sections are presented as they would be detailed in a typical manuscript, with content describing the necessary information that should be included to make sure the study is of sufficient quality to be considered for publication. The goal of this series is to provide resources to not only help improve the review process for A.I.-based medical imaging papers, but to facilitate a standard for the information that is presented within all components of the research study. We hope to provide quantitative metrics in what otherwise may be a qualitative review process.
A new cost-efficient concept to realize a real-time monitoring of quality-of-service metrics and other service data in 5G and beyond access network using a separate return channel based on a vertical cavity surface emitting laser in the optical injection locked mode that simultaneously operates as an optical transmitter and as a resonant cavity enhanced photodetector, is proposed and discussed. The feasibility and efficiency of the proposed approach are confirmed by a proof-of-concept experiment when optically transceiving high-speed digital signal with multi-position quadrature amplitude modulation of a radio-frequency carrier.
Fast developing artificial intelligence (AI) technology has enabled various applied systems deployed in the real world, impacting people's everyday lives. However, many current AI systems were found vulnerable to imperceptible attacks, biased against underrepresented groups, lacking in user privacy protection, etc., which not only degrades user experience but erodes the society's trust in all AI systems. In this review, we strive to provide AI practitioners a comprehensive guide towards building trustworthy AI systems. We first introduce the theoretical framework of important aspects of AI trustworthiness, including robustness, generalization, explainability, transparency, reproducibility, fairness, privacy preservation, alignment with human values, and accountability. We then survey leading approaches in these aspects in the industry. To unify the current fragmented approaches towards trustworthy AI, we propose a systematic approach that considers the entire lifecycle of AI systems, ranging from data acquisition to model development, to development and deployment, finally to continuous monitoring and governance. In this framework, we offer concrete action items to practitioners and societal stakeholders (e.g., researchers and regulators) to improve AI trustworthiness. Finally, we identify key opportunities and challenges in the future development of trustworthy AI systems, where we identify the need for paradigm shift towards comprehensive trustworthy AI systems.
In recent years, mobile devices have gained increasingly development with stronger computation capability and larger storage. Some of the computation-intensive machine learning and deep learning tasks can now be run on mobile devices. To take advantage of the resources available on mobile devices and preserve users' privacy, the idea of mobile distributed machine learning is proposed. It uses local hardware resources and local data to solve machine learning sub-problems on mobile devices, and only uploads computation results instead of original data to contribute to the optimization of the global model. This architecture can not only relieve computation and storage burden on servers, but also protect the users' sensitive information. Another benefit is the bandwidth reduction, as various kinds of local data can now participate in the training process without being uploaded to the server. In this paper, we provide a comprehensive survey on recent studies of mobile distributed machine learning. We survey a number of widely-used mobile distributed machine learning methods. We also present an in-depth discussion on the challenges and future directions in this area. We believe that this survey can demonstrate a clear overview of mobile distributed machine learning and provide guidelines on applying mobile distributed machine learning to real applications.
Conversational systems have come a long way since their inception in the 1960s. After decades of research and development, we've seen progress from Eliza and Parry in the 60's and 70's, to task-completion systems as in the DARPA Communicator program in the 2000s, to intelligent personal assistants such as Siri in the 2010s, to today's social chatbots like XiaoIce. Social chatbots' appeal lies not only in their ability to respond to users' diverse requests, but also in being able to establish an emotional connection with users. The latter is done by satisfying users' need for communication, affection, as well as social belonging. To further the advancement and adoption of social chatbots, their design must focus on user engagement and take both intellectual quotient (IQ) and emotional quotient (EQ) into account. Users should want to engage with a social chatbot; as such, we define the success metric for social chatbots as conversation-turns per session (CPS). Using XiaoIce as an illustrative example, we discuss key technologies in building social chatbots from core chat to visual awareness to skills. We also show how XiaoIce can dynamically recognize emotion and engage the user throughout long conversations with appropriate interpersonal responses. As we become the first generation of humans ever living with AI, we have a responsibility to design social chatbots to be both useful and empathetic, so they will become ubiquitous and help society as a whole.