Accurate calibration is crucial for using multiple cameras to triangulate the position of objects precisely. However, it is also a time-consuming process that needs to be repeated for every displacement of the cameras. The standard approach is to use a printed pattern with known geometry to estimate the intrinsic and extrinsic parameters of the cameras. The same idea can be applied to event-based cameras, though it requires extra work. By using frame reconstruction from events, a printed pattern can be detected. A blinking pattern can also be displayed on a screen. Then, the pattern can be directly detected from the events. Such calibration methods can provide accurate intrinsic calibration for both frame- and event-based cameras. However, using 2D patterns has several limitations for multi-camera extrinsic calibration, with cameras possessing highly different points of view and a wide baseline. The 2D pattern can only be detected from one direction and needs to be of significant size to compensate for its distance to the camera. This makes the extrinsic calibration time-consuming and cumbersome. To overcome these limitations, we propose eWand, a new method that uses blinking LEDs inside opaque spheres instead of a printed or displayed pattern. Our method provides a faster, easier-to-use extrinsic calibration approach that maintains high accuracy for both event- and frame-based cameras.
Modern high-throughput sequencing assays efficiently capture not only gene expression and different levels of gene regulation but also a multitude of genome variants. Focused analysis of alternative alleles of variable sites at homologous chromosomes of the human genome reveals allele-specific gene expression and allele-specific gene regulation by assessing allelic imbalance of read counts at individual sites. Here we formally describe an advanced statistical framework for detecting the allelic imbalance in allelic read counts at single-nucleotide variants detected in diverse omics studies (ChIP-Seq, ATAC-Seq, DNase-Seq, CAGE-Seq, and others). MIXALIME accounts for copy-number variants and aneuploidy, reference read mapping bias, and provides several scoring models to balance between sensitivity and specificity when scoring data with varying levels of experimental noise-caused overdispersion.
SCONE-GAN presents an end-to-end image translation, which is shown to be effective for learning to generate realistic and diverse scenery images. Most current image-to-image translation approaches are devised as two mappings: a translation from the source to target domain and another to represent its inverse. While successful in many applications, these approaches may suffer from generating trivial solutions with limited diversity. That is because these methods learn more frequent associations rather than the scene structures. To mitigate the problem, we propose SCONE-GAN that utilises graph convolutional networks to learn the objects dependencies, maintain the image structure and preserve its semantics while transferring images into the target domain. For more realistic and diverse image generation we introduce style reference image. We enforce the model to maximize the mutual information between the style image and output. The proposed method explicitly maximizes the mutual information between the related patches, thus encouraging the generator to produce more diverse images. We validate the proposed algorithm for image-to-image translation and stylizing outdoor images. Both qualitative and quantitative results demonstrate the effectiveness of our approach on four dataset.
The meteoric rise in the adoption of deep neural networks as computational models of vision has inspired efforts to "align" these models with humans. One dimension of interest for alignment includes behavioral choices, but moving beyond characterizing choice patterns to capturing temporal aspects of visual decision-making has been challenging. Here, we sketch a general-purpose methodology to construct computational accounts of reaction times from a stimulus-computable, task-optimized model. Specifically, we introduce a novel metric leveraging insights from subjective logic theory summarizing evidence accumulation in recurrent vision models. We demonstrate that our metric aligns with patterns of human reaction times for stimulus manipulations across four disparate visual decision-making tasks spanning perceptual grouping, mental simulation, and scene categorization. This work paves the way for exploring the temporal alignment of model and human visual strategies in the context of various other cognitive tasks toward generating testable hypotheses for neuroscience. Links to the code and data can be found on the project page: //serre-lab.github.io/rnn_rts_site.
LiDAR semantic segmentation for autonomous driving has been a growing field of interest in the past few years. Datasets and methods have appeared and expanded very quickly, but methods have not been updated to exploit this new availability of data and continue to rely on the same classical datasets. Different ways of performing LIDAR semantic segmentation training and inference can be divided into several subfields, which include the following: domain generalization, the ability to segment data coming from unseen domains ; source-to-source segmentation, the ability to segment data coming from the training domain; and pre-training, the ability to create re-usable geometric primitives. In this work, we aim to improve results in all of these subfields with the novel approach of multi-source training. Multi-source training relies on the availability of various datasets at training time and uses them together rather than relying on only one dataset. To overcome the common obstacles found for multi-source training, we introduce the coarse labels and call the newly created multi-source dataset COLA. We propose three applications of this new dataset that display systematic improvement over single-source strategies: COLA-DG for domain generalization (up to +10%), COLA-S2S for source-to-source segmentation (up to +5.3%), and COLA-PT for pre-training (up to +12%).
Nowadays, real-time vehicle applications increasingly rely on video acquisition and processing to detect or even identify vehicles and obstacles in the driving environment. In this letter, we propose an algorithm that allows reinforcing these operations by improving end-to-end video transmission quality in a vehicular context. The proposed low complexity solution gives highest priority to the scene regions of interest (ROI) on which the perception of the driving environment is based on. This is done by applying an adaptive cross-layer mapping of the ROI visual data packets at the IEEE 802.11p MAC layer. Realistic VANET simulation results demonstrate that for HEVC compressed video communications, the proposed system offers PSNR gains up to 11dB on the ROI part.
We consider state and parameter estimation for compartmental models having both time-varying and time-invariant parameters. Though the described Bayesian computational framework is general, we look at a specific application to the susceptible-infectious-removed (SIR) model which describes a basic mechanism for the spread of infectious diseases through a system of coupled nonlinear differential equations. The SIR model consists of three states, namely, the three compartments, and two parameters which control the coupling among the states. The deterministic SIR model with time-invariant parameters has shown to be overly simplistic for modelling the complex long-term dynamics of diseases transmission. Recognizing that certain model parameters will naturally vary in time due to seasonal trends, non-pharmaceutical interventions, and other random effects, the estimation procedure must systematically permit these time-varying effects to be captured, without unduly introducing artificial dynamics into the system. To this end, we leverage the robustness of the Markov Chain Monte Carlo (MCMC) algorithm for the estimation of time-invariant parameters alongside nonlinear filters for the joint estimation of the system state and time-varying parameters. We demonstrate performance of the framework by first considering a series of examples using synthetic data, followed by an exposition on public health data collected in the province of Ontario.
Complex models are often used to understand interactions and drivers of human-induced and/or natural phenomena. It is worth identifying the input variables that drive the model output(s) in a given domain and/or govern specific model behaviors such as contextual indicators based on socio-environmental models. Using the theory of multivariate weighted distributions to characterize specific model behaviors, we propose new measures of association between inputs and such behaviors. Our measures rely on sensitivity functionals (SFs) and kernel methods, including variance-based sensitivity analysis. The proposed $\ell_1$-based kernel indices account for interactions among inputs, higher-order moments of SFs, and their upper bounds are somehow equivalent to the Morris-type screening measures, including dependent elementary effects. Empirical kernel-based indices are derived, including their statistical properties for the computational issues, and numerical results are provided.
Functionality is a graph complexity measure that extends a variety of parameters, such as vertex degree, degeneracy, clique-width, or twin-width. In the present paper, we show that functionality is bounded for box intersection graphs in $\mathbb{R}^1$, i.e. for interval graphs, and unbounded for box intersection graphs in $\mathbb{R}^3$. We also study a parameter known as symmetric difference, which is intermediate between twin-width and functionality, and show that this parameter is unbounded both for interval graphs and for unit box intersection graphs in $\mathbb{R}^2$.
Quantum computing has recently emerged as a transformative technology. Yet, its promised advantages rely on efficiently translating quantum operations into viable physical realizations. In this work, we use generative machine learning models, specifically denoising diffusion models (DMs), to facilitate this transformation. Leveraging text-conditioning, we steer the model to produce desired quantum operations within gate-based quantum circuits. Notably, DMs allow to sidestep during training the exponential overhead inherent in the classical simulation of quantum dynamics -- a consistent bottleneck in preceding ML techniques. We demonstrate the model's capabilities across two tasks: entanglement generation and unitary compilation. The model excels at generating new circuits and supports typical DM extensions such as masking and editing to, for instance, align the circuit generation to the constraints of the targeted quantum device. Given their flexibility and generalization abilities, we envision DMs as pivotal in quantum circuit synthesis, enhancing both practical applications but also insights into theoretical quantum computation.
We present ResMLP, an architecture built entirely upon multi-layer perceptrons for image classification. It is a simple residual network that alternates (i) a linear layer in which image patches interact, independently and identically across channels, and (ii) a two-layer feed-forward network in which channels interact independently per patch. When trained with a modern training strategy using heavy data-augmentation and optionally distillation, it attains surprisingly good accuracy/complexity trade-offs on ImageNet. We will share our code based on the Timm library and pre-trained models.