亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Data augmentation has been proven effective for training high-accuracy convolutional neural network classifiers by preventing overfitting. However, building deep neural networks in real-world scenarios requires not only high accuracy on clean data but also robustness when data distributions shift. While prior methods have proposed that there is a trade-off between accuracy and robustness, we propose IPMix, a simple data augmentation approach to improve robustness without hurting clean accuracy. IPMix integrates three levels of data augmentation (image-level, patch-level, and pixel-level) into a coherent and label-preserving technique to increase the diversity of training data with limited computational overhead. To further improve the robustness, IPMix introduces structural complexity at different levels to generate more diverse images and adopts the random mixing method for multi-scale information fusion. Experiments demonstrate that IPMix outperforms state-of-the-art corruption robustness on CIFAR-C and ImageNet-C. In addition, we show that IPMix also significantly improves the other safety measures, including robustness to adversarial perturbations, calibration, prediction consistency, and anomaly detection, achieving state-of-the-art or comparable results on several benchmarks, including ImageNet-R, ImageNet-A, and ImageNet-O.

相關內容

Data imbalance in training data often leads to biased predictions from trained models, which in turn causes ethical and social issues. A straightforward solution is to carefully curate training data, but given the enormous scale of modern neural networks, this is prohibitively labor-intensive and thus impractical. Inspired by recent developments in generative models, this paper explores the potential of synthetic data to address the data imbalance problem. To be specific, our method, dubbed SYNAuG, leverages synthetic data to equalize the unbalanced distribution of training data. Our experiments demonstrate that, although a domain gap between real and synthetic data exists, training with SYNAuG followed by fine-tuning with a few real samples allows to achieve impressive performance on diverse tasks with different data imbalance issues, surpassing existing task-specific methods for the same purpose.

LiDAR segmentation has become a crucial component in advanced autonomous driving systems. Recent range-view LiDAR segmentation approaches show promise for real-time processing. However, they inevitably suffer from corrupted contextual information and rely heavily on post-processing techniques for prediction refinement. In this work, we propose FRNet, a simple yet powerful method aimed at restoring the contextual information of range image pixels using corresponding frustum LiDAR points. Firstly, a frustum feature encoder module is used to extract per-point features within the frustum region, which preserves scene consistency and is crucial for point-level predictions. Next, a frustum-point fusion module is introduced to update per-point features hierarchically, enabling each point to extract more surrounding information via the frustum features. Finally, a head fusion module is used to fuse features at different levels for final semantic prediction. Extensive experiments conducted on four popular LiDAR segmentation benchmarks under various task setups demonstrate the superiority of FRNet. Notably, FRNet achieves 73.3% and 82.5% mIoU scores on the testing sets of SemanticKITTI and nuScenes. While achieving competitive performance, FRNet operates 5 times faster than state-of-the-art approaches. Such high efficiency opens up new possibilities for more scalable LiDAR segmentation. The code has been made publicly available at //github.com/Xiangxu-0103/FRNet.

Federated learning has been identified as an efficient decentralized training paradigm for scaling the machine learning model training on a large number of devices while guaranteeing the data privacy of the trainers. FedAvg has become a foundational parameter update strategy for federated learning, which has been promising to eliminate the effect of the heterogeneous data across clients and guarantee convergence. However, the synchronization parameter update barriers for each communication round during the training significant time on waiting, slowing down the training procedure. Therefore, recent state-of-the-art solutions propose using semi-asynchronous approaches to mitigate the waiting time cost with guaranteed convergence. Nevertheless, emerging semi-asynchronous approaches are unable to eliminate the waiting time completely. We propose a full asynchronous training paradigm, called FedFa, which can guarantee model convergence and eliminate the waiting time completely for federated learning by using a few buffered results on the server for parameter updating. Further, we provide theoretical proof of the convergence rate for our proposed FedFa. Extensive experimental results indicate our approach effectively improves the training performance of federated learning by up to 6x and 4x speedup compared to the state-of-the-art synchronous and semi-asynchronous strategies while retaining high accuracy in both IID and Non-IID scenarios.

Federated learning has shown its advances recently but is still facing many challenges, such as how algorithms save communication resources and reduce computational costs, and whether they converge. To address these critical issues, we propose a hybrid federated learning algorithm (FedGiA) that combines the gradient descent and the inexact alternating direction method of multipliers. The proposed algorithm is more communication- and computation-efficient than several state-of-the-art algorithms theoretically and numerically. Moreover, it also converges globally under mild conditions.

Model-free control strategies such as reinforcement learning have shown the ability to learn control strategies without requiring an accurate model or simulator of the world. While this is appealing due to the lack of modeling requirements, such methods can be sample inefficient, making them impractical in many real-world domains. On the other hand, model-based control techniques leveraging accurate simulators can circumvent these challenges and use a large amount of cheap simulation data to learn controllers that can effectively transfer to the real world. The challenge with such model-based techniques is the requirement for an extremely accurate simulation, requiring both the specification of appropriate simulation assets and physical parameters. This requires considerable human effort to design for every environment being considered. In this work, we propose a learning system that can leverage a small amount of real-world data to autonomously refine a simulation model and then plan an accurate control strategy that can be deployed in the real world. Our approach critically relies on utilizing an initial (possibly inaccurate) simulator to design effective exploration policies that, when deployed in the real world, collect high-quality data. We demonstrate the efficacy of this paradigm in identifying articulation, mass, and other physical parameters in several challenging robotic manipulation tasks, and illustrate that only a small amount of real-world data can allow for effective sim-to-real transfer. Project website at //weirdlabuw.github.io/asid

The effectiveness of traffic light control has been significantly improved by current reinforcement learning-based approaches via better cooperation among multiple traffic lights. However, a persisting issue remains: how to obtain a multi-agent traffic signal control algorithm with remarkable transferability across diverse cities? In this paper, we propose a Transformer on Transformer (TonT) model for cross-city meta multi-agent traffic signal control, named as X-Light: We input the full Markov Decision Process trajectories, and the Lower Transformer aggregates the states, actions, rewards among the target intersection and its neighbors within a city, and the Upper Transformer learns the general decision trajectories across different cities. This dual-level approach bolsters the model's robust generalization and transferability. Notably, when directly transferring to unseen scenarios, ours surpasses all baseline methods with +7.91% on average, and even +16.3% in some cases, yielding the best results.

Automatic speech recognition (ASR) has gained remarkable successes thanks to recent advances of deep learning, but it usually degrades significantly under real-world noisy conditions. Recent works introduce speech enhancement (SE) as front-end to improve speech quality, which is proved effective but may not be optimal for downstream ASR due to speech distortion problem. Based on that, latest works combine SE and currently popular self-supervised learning (SSL) to alleviate distortion and improve noise robustness. Despite the effectiveness, the speech distortion caused by conventional SE still cannot be cleared out. In this paper, we propose a self-supervised framework named Wav2code to implement a feature-level SE with reduced distortions for noise-robust ASR. First, in pre-training stage the clean speech representations from SSL model are sent to lookup a discrete codebook via nearest-neighbor feature matching, the resulted code sequence are then exploited to reconstruct the original clean representations, in order to store them in codebook as prior. Second, during finetuning we propose a Transformer-based code predictor to accurately predict clean codes by modeling the global dependency of input noisy representations, which enables discovery and restoration of high-quality clean representations with reduced distortions. Furthermore, we propose an interactive feature fusion network to combine original noisy and the restored clean representations to consider both fidelity and quality, resulting in more informative features for downstream ASR. Finally, experiments on both synthetic and real noisy datasets demonstrate that Wav2code can solve the speech distortion and improve ASR performance under various noisy conditions, resulting in stronger robustness.

Recently many efforts have been devoted to applying graph neural networks (GNNs) to molecular property prediction which is a fundamental task for computational drug and material discovery. One of major obstacles to hinder the successful prediction of molecule property by GNNs is the scarcity of labeled data. Though graph contrastive learning (GCL) methods have achieved extraordinary performance with insufficient labeled data, most focused on designing data augmentation schemes for general graphs. However, the fundamental property of a molecule could be altered with the augmentation method (like random perturbation) on molecular graphs. Whereas, the critical geometric information of molecules remains rarely explored under the current GNN and GCL architectures. To this end, we propose a novel graph contrastive learning method utilizing the geometry of the molecule across 2D and 3D views, which is named GeomGCL. Specifically, we first devise a dual-view geometric message passing network (GeomMPNN) to adaptively leverage the rich information of both 2D and 3D graphs of a molecule. The incorporation of geometric properties at different levels can greatly facilitate the molecular representation learning. Then a novel geometric graph contrastive scheme is designed to make both geometric views collaboratively supervise each other to improve the generalization ability of GeomMPNN. We evaluate GeomGCL on various downstream property prediction tasks via a finetune process. Experimental results on seven real-life molecular datasets demonstrate the effectiveness of our proposed GeomGCL against state-of-the-art baselines.

There recently has been a surge of interest in developing a new class of deep learning (DL) architectures that integrate an explicit time dimension as a fundamental building block of learning and representation mechanisms. In turn, many recent results show that topological descriptors of the observed data, encoding information on the shape of the dataset in a topological space at different scales, that is, persistent homology of the data, may contain important complementary information, improving both performance and robustness of DL. As convergence of these two emerging ideas, we propose to enhance DL architectures with the most salient time-conditioned topological information of the data and introduce the concept of zigzag persistence into time-aware graph convolutional networks (GCNs). Zigzag persistence provides a systematic and mathematically rigorous framework to track the most important topological features of the observed data that tend to manifest themselves over time. To integrate the extracted time-conditioned topological descriptors into DL, we develop a new topological summary, zigzag persistence image, and derive its theoretical stability guarantees. We validate the new GCNs with a time-aware zigzag topological layer (Z-GCNETs), in application to traffic forecasting and Ethereum blockchain price prediction. Our results indicate that Z-GCNET outperforms 13 state-of-the-art methods on 4 time series datasets.

Language model pre-training, such as BERT, has significantly improved the performances of many natural language processing tasks. However, pre-trained language models are usually computationally expensive and memory intensive, so it is difficult to effectively execute them on some resource-restricted devices. To accelerate inference and reduce model size while maintaining accuracy, we firstly propose a novel transformer distillation method that is a specially designed knowledge distillation (KD) method for transformer-based models. By leveraging this new KD method, the plenty of knowledge encoded in a large teacher BERT can be well transferred to a small student TinyBERT. Moreover, we introduce a new two-stage learning framework for TinyBERT, which performs transformer distillation at both the pre-training and task-specific learning stages. This framework ensures that TinyBERT can capture both the general-domain and task-specific knowledge of the teacher BERT. TinyBERT is empirically effective and achieves comparable results with BERT in GLUE datasets, while being 7.5x smaller and 9.4x faster on inference. TinyBERT is also significantly better than state-of-the-art baselines, even with only about 28% parameters and 31% inference time of baselines.

北京阿比特科技有限公司