亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We present nested sequent systems for propositional G\"odel-Dummett logic and its first-order extensions with non-constant and constant domains, built atop nested calculi for intuitionistic logics. To obtain nested systems for these G\"odel-Dummett logics, we introduce a new structural rule, called the "linearity rule," which (bottom-up) operates by linearizing branching structure in a given nested sequent. In addition, an interesting feature of our calculi is the inclusion of reachability rules, which are special logical rules that operate by propagating data and/or checking if data exists along certain paths within a nested sequent. Such rules require us to generalize our nested sequents to include signatures (i.e. finite collections of variables) in the first-order cases, thus giving rise to a generalization of the usual nested sequent formalism. Our calculi exhibit favorable properties, admitting the height-preserving invertibility of every logical rule and the (height-preserving) admissibility of a large collection of structural and reachability rules. We prove all of our systems sound and cut-free complete, and show that syntactic cut-elimination obtains for the intuitionistic systems. We conclude the paper by discussing possible extensions and modifications, putting forth an array of structural rules that could be used to provide a sizable class of intermediate logics with cut-free nested sequent systems.

相關內容

iOS 8 提供的應用間和應用跟系統的功能交互特性。
  • Today (iOS and OS X): widgets for the Today view of Notification Center
  • Share (iOS and OS X): post content to web services or share content with others
  • Actions (iOS and OS X): app extensions to view or manipulate inside another app
  • Photo Editing (iOS): edit a photo or video in Apple's Photos app with extensions from a third-party apps
  • Finder Sync (OS X): remote file storage in the Finder with support for Finder content annotation
  • Storage Provider (iOS): an interface between files inside an app and other apps on a user's device
  • Custom Keyboard (iOS): system-wide alternative keyboards

Source:

Formal method-based analysis of the 5G Wireless Communication Protocol is crucial for identifying logical vulnerabilities and facilitating an all-encompassing security assessment, especially in the design phase. Natural Language Processing (NLP) assisted techniques and most of the tools are not widely adopted by the industry and research community. Traditional formal verification through a mathematics approach heavily relied on manual logical abstraction prone to being time-consuming, and error-prone. The reason that the NLP-assisted method did not apply in industrial research may be due to the ambiguity in the natural language of the protocol designs nature is controversial to the explicitness of formal verification. To address the challenge of adopting the formal methods in protocol designs, targeting (3GPP) protocols that are written in natural language, in this study, we propose a hybrid approach to streamline the analysis of protocols. We introduce a two-step pipeline that first uses NLP tools to construct data and then uses constructed data to extract identifiers and formal properties by using the NLP model. The identifiers and formal properties are further used for formal analysis. We implemented three models that take different dependencies between identifiers and formal properties as criteria. Our results of the optimal model reach valid accuracy of 39% for identifier extraction and 42% for formal properties predictions. Our work is proof of concept for an efficient procedure in performing formal analysis for largescale complicate specification and protocol analysis, especially for 5G and nextG communications.

In recent years, diffusion models have achieved tremendous success in the field of image generation, becoming the stateof-the-art technology for AI-based image processing applications. Despite the numerous benefits brought by recent advances in diffusion models, there are also concerns about their potential misuse, specifically in terms of privacy breaches and intellectual property infringement. In particular, some of their unique characteristics open up new attack surfaces when considering the real-world deployment of such models. With a thorough investigation of the attack vectors, we develop a systematic analysis of membership inference attacks on diffusion models and propose novel attack methods tailored to each attack scenario specifically relevant to diffusion models. Our approach exploits easily obtainable quantities and is highly effective, achieving near-perfect attack performance (>0.9 AUCROC) in realistic scenarios. Our extensive experiments demonstrate the effectiveness of our method, highlighting the importance of considering privacy and intellectual property risks when using diffusion models in image generation tasks.

In policy learning for robotic manipulation, sample efficiency is of paramount importance. Thus, learning and extracting more compact representations from camera observations is a promising avenue. However, current methods often assume full observability of the scene and struggle with scale invariance. In many tasks and settings, this assumption does not hold as objects in the scene are often occluded or lie outside the field of view of the camera, rendering the camera observation ambiguous with regard to their location. To tackle this problem, we present BASK, a Bayesian approach to tracking scale-invariant keypoints over time. Our approach successfully resolves inherent ambiguities in images, enabling keypoint tracking on symmetrical objects and occluded and out-of-view objects. We employ our method to learn challenging multi-object robot manipulation tasks from wrist camera observations and demonstrate superior utility for policy learning compared to other representation learning techniques. Furthermore, we show outstanding robustness towards disturbances such as clutter, occlusions, and noisy depth measurements, as well as generalization to unseen objects both in simulation and real-world robotic experiments.

We consider the problem of estimating the false-/ true-positive-rate (FPR/TPR) for a binary classification model when there are incorrect labels (label noise) in the validation set. Our motivating application is fraud prevention where accurate estimates of FPR are critical to preserving the experience for good customers, and where label noise is highly asymmetric. Existing methods seek to minimize the total error in the cleaning process - to avoid cleaning examples that are not noise, and to ensure cleaning of examples that are. This is an important measure of accuracy but insufficient to guarantee good estimates of the true FPR or TPR for a model, and we show that using the model to directly clean its own validation data leads to underestimates even if total error is low. This indicates a need for researchers to pursue methods that not only reduce total error but also seek to de-correlate cleaning error with model scores.

The literature on machine learning in the context of data streams is vast and growing. However, many of the defining assumptions regarding data-stream learning tasks are too strong to hold in practice, or are even contradictory such that they cannot be met in the contexts of supervised learning. Algorithms are chosen and designed based on criteria which are often not clearly stated, for problem settings not clearly defined, tested in unrealistic settings, and/or in isolation from related approaches in the wider literature. This puts into question the potential for real-world impact of many approaches conceived in such contexts, and risks propagating a misguided research focus. We propose to tackle these issues by reformulating the fundamental definitions and settings of supervised data-stream learning with regard to contemporary considerations of concept drift and temporal dependence; and we take a fresh look at what constitutes a supervised data-stream learning task, and a reconsideration of algorithms that may be applied to tackle such tasks. Through and in reflection of this formulation and overview, helped by an informal survey of industrial players dealing with real-world data streams, we provide recommendations. Our main emphasis is that learning from data streams does not impose a single-pass or online-learning approach, or any particular learning regime; and any constraints on memory and time are not specific to streaming. Meanwhile, there exist established techniques for dealing with temporal dependence and concept drift, in other areas of the literature. For the data streams community, we thus encourage a shift in research focus, from dealing with often-artificial constraints and assumptions on the learning mode, to issues such as robustness, privacy, and interpretability which are increasingly relevant to learning in data streams in academic and industrial settings.

Despite the advancement of machine learning techniques in recent years, state-of-the-art systems lack robustness to "real world" events, where the input distributions and tasks encountered by the deployed systems will not be limited to the original training context, and systems will instead need to adapt to novel distributions and tasks while deployed. This critical gap may be addressed through the development of "Lifelong Learning" systems that are capable of 1) Continuous Learning, 2) Transfer and Adaptation, and 3) Scalability. Unfortunately, efforts to improve these capabilities are typically treated as distinct areas of research that are assessed independently, without regard to the impact of each separate capability on other aspects of the system. We instead propose a holistic approach, using a suite of metrics and an evaluation framework to assess Lifelong Learning in a principled way that is agnostic to specific domains or system techniques. Through five case studies, we show that this suite of metrics can inform the development of varied and complex Lifelong Learning systems. We highlight how the proposed suite of metrics quantifies performance trade-offs present during Lifelong Learning system development - both the widely discussed Stability-Plasticity dilemma and the newly proposed relationship between Sample Efficient and Robust Learning. Further, we make recommendations for the formulation and use of metrics to guide the continuing development of Lifelong Learning systems and assess their progress in the future.

In pace with developments in the research field of artificial intelligence, knowledge graphs (KGs) have attracted a surge of interest from both academia and industry. As a representation of semantic relations between entities, KGs have proven to be particularly relevant for natural language processing (NLP), experiencing a rapid spread and wide adoption within recent years. Given the increasing amount of research work in this area, several KG-related approaches have been surveyed in the NLP research community. However, a comprehensive study that categorizes established topics and reviews the maturity of individual research streams remains absent to this day. Contributing to closing this gap, we systematically analyzed 507 papers from the literature on KGs in NLP. Our survey encompasses a multifaceted review of tasks, research types, and contributions. As a result, we present a structured overview of the research landscape, provide a taxonomy of tasks, summarize our findings, and highlight directions for future work.

Existing recommender systems extract the user preference based on learning the correlation in data, such as behavioral correlation in collaborative filtering, feature-feature, or feature-behavior correlation in click-through rate prediction. However, regretfully, the real world is driven by causality rather than correlation, and correlation does not imply causation. For example, the recommender systems can recommend a battery charger to a user after buying a phone, in which the latter can serve as the cause of the former, and such a causal relation cannot be reversed. Recently, to address it, researchers in recommender systems have begun to utilize causal inference to extract causality, enhancing the recommender system. In this survey, we comprehensively review the literature on causal inference-based recommendation. At first, we present the fundamental concepts of both recommendation and causal inference as the basis of later content. We raise the typical issues that the non-causality recommendation is faced. Afterward, we comprehensively review the existing work of causal inference-based recommendation, based on a taxonomy of what kind of problem causal inference addresses. Last, we discuss the open problems in this important research area, along with interesting future works.

In multi-turn dialog, utterances do not always take the full form of sentences \cite{Carbonell1983DiscoursePA}, which naturally makes understanding the dialog context more difficult. However, it is essential to fully grasp the dialog context to generate a reasonable response. Hence, in this paper, we propose to improve the response generation performance by examining the model's ability to answer a reading comprehension question, where the question is focused on the omitted information in the dialog. Enlightened by the multi-task learning scheme, we propose a joint framework that unifies these two tasks, sharing the same encoder to extract the common and task-invariant features with different decoders to learn task-specific features. To better fusing information from the question and the dialog history in the encoding part, we propose to augment the Transformer architecture with a memory updater, which is designed to selectively store and update the history dialog information so as to support downstream tasks. For the experiment, we employ human annotators to write and examine a large-scale dialog reading comprehension dataset. Extensive experiments are conducted on this dataset, and the results show that the proposed model brings substantial improvements over several strong baselines on both tasks. In this way, we demonstrate that reasoning can indeed help better response generation and vice versa. We release our large-scale dataset for further research.

The problem of Multiple Object Tracking (MOT) consists in following the trajectory of different objects in a sequence, usually a video. In recent years, with the rise of Deep Learning, the algorithms that provide a solution to this problem have benefited from the representational power of deep models. This paper provides a comprehensive survey on works that employ Deep Learning models to solve the task of MOT on single-camera videos. Four main steps in MOT algorithms are identified, and an in-depth review of how Deep Learning was employed in each one of these stages is presented. A complete experimental comparison of the presented works on the three MOTChallenge datasets is also provided, identifying a number of similarities among the top-performing methods and presenting some possible future research directions.

北京阿比特科技有限公司