This paper presents a high-order discontinuous Galerkin finite element method to solve the barotropic version of the conservative symmetric hyperbolic and thermodynamically compatible (SHTC) model of compressible two-phase flow, introduced by Romenski et al., in multiple space dimensions. In the absence of algebraic source terms, the model is endowed with a curl constraint on the relative velocity field. In this paper, the hyperbolicity of the system is studied for the first time in the multidimensional case, showing that the original model is only weakly hyperbolic in multiple space dimensions. To restore strong hyperbolicity, two different methodologies are used: i) the explicit symmetrization of the system, which can be achieved by adding terms that contain linear combinations of the curl involution, similar to the Godunov-Powell terms in the MHD equations; ii) the use of the hyperbolic generalized Lagrangian multiplier (GLM) curl-cleaning approach forwarded. The PDE system is solved using a high-order ADER discontinuous Galerkin method with a posteriori sub-cell finite volume limiter to deal with shock waves and the steep gradients in the volume fraction commonly appearing in the solutions of this type of model. To illustrate the performance of the method, several different test cases and benchmark problems have been run, showing the high-order of the scheme and the good agreement when compared to reference solutions computed with other well-known methods.
Semilinear hyperbolic stochastic partial differential equations (SPDEs) find widespread applications in the natural and engineering sciences. However, the traditional Gaussian setting may prove too restrictive, as phenomena in mathematical finance, porous media, and pollution models often exhibit noise of a different nature. To capture temporal discontinuities and accommodate heavy-tailed distributions, Hilbert space-valued L\'evy processes or L\'evy fields are employed as driving noise terms. The numerical discretization of such SPDEs presents several challenges. The low regularity of the solution in space and time leads to slow convergence rates and instability in space/time discretization schemes. Furthermore, the L\'evy process can take values in an infinite-dimensional Hilbert space, necessitating projections onto finite-dimensional subspaces at each discrete time point. Additionally, unbiased sampling from the resulting L\'evy field may not be feasible. In this study, we introduce a novel fully discrete approximation scheme that tackles these difficulties. Our main contribution is a discontinuous Galerkin scheme for spatial approximation, derived naturally from the weak formulation of the SPDE. We establish optimal convergence properties for this approach and combine it with a suitable time stepping scheme to prevent numerical oscillations. Furthermore, we approximate the driving noise process using truncated Karhunen-Lo\`eve expansions. This approximation yields a sum of scaled and uncorrelated one-dimensional L\'evy processes, which can be simulated with controlled bias using Fourier inversion techniques.
Diffusion MRI (dMRI) is a widely used imaging modality, but requires long scanning times to acquire high resolution datasets. By leveraging the unique geometry present within this domain, we present a novel approach to dMRI angular super-resolution that extends upon the parametric continuous convolution (PCConv) framework. We introduce several additions to the operation including a Fourier feature mapping, global coordinates, and domain specific context. Using this framework, we build a fully parametric continuous convolution network (PCCNN) and compare against existing models. We demonstrate the PCCNN performs competitively while using significantly less parameters. Moreover, we show that this formulation generalises well to clinically relevant downstream analyses such as fixel-based analysis, and neurite orientation dispersion and density imaging.
In this work we connect two notions: That of the nonparametric mode of a probability measure, defined by asymptotic small ball probabilities, and that of the Onsager-Machlup functional, a generalized density also defined via asymptotic small ball probabilities. We show that in a separable Hilbert space setting and under mild conditions on the likelihood, modes of a Bayesian posterior distribution based upon a Gaussian prior exist and agree with the minimizers of its Onsager-Machlup functional and thus also with weak posterior modes. We apply this result to inverse problems and derive conditions on the forward mapping under which this variational characterization of posterior modes holds. Our results show rigorously that in the limit case of infinite-dimensional data corrupted by additive Gaussian or Laplacian noise, nonparametric maximum a posteriori estimation is equivalent to Tikhonov-Phillips regularization. In comparison with the work of Dashti, Law, Stuart, and Voss (2013), the assumptions on the likelihood are relaxed so that they cover in particular the important case of white Gaussian process noise. We illustrate our results by applying them to a severely ill-posed linear problem with Laplacian noise, where we express the maximum a posteriori estimator analytically and study its rate of convergence in the small noise limit.
In this paper, we devise a scheme for kernelizing, in sublinear space and polynomial time, various problems on planar graphs. The scheme exploits planarity to ensure that the resulting algorithms run in polynomial time and use O((sqrt(n) + k) log n) bits of space, where n is the number of vertices in the input instance and k is the intended solution size. As examples, we apply the scheme to Dominating Set and Vertex Cover. For Dominating Set, we also show that a well-known kernelization algorithm due to Alber et al. (JACM 2004) can be carried out in polynomial time and space O(k log n). Along the way, we devise restricted-memory procedures for computing region decompositions and approximating the aforementioned problems, which might be of independent interest.
Several classical combinatorial problems have been considered and analysed on temporal graphs. Recently, a variant of Vertex Cover on temporal graphs, called MinTimelineCover, has been introduced to summarize timeline activities in social networks. The problem asks to cover every temporal edge while minimizing the total span of the vertices (where the span of a vertex is the length of the timestamp interval it must remain active in, minus one). While the problem has been shown to be NP-hard even in very restricted cases, its parameterized complexity has not been fully understood. The problem is known to be in FPT under the span parameter only for graphs with two timestamps, but the parameterized complexity for the general case is open. We settle this open problem by giving an FPT algorithm that is based on a combination of iterative compression and a reduction to the Digraph Pair Cut problem, a powerful problem that has received significant attention recently.
The Immersed Boundary (IB) method of Peskin (J. Comput. Phys., 1977) is useful for problems involving fluid-structure interactions or complex geometries. By making use of a regular Cartesian grid that is independent of the geometry, the IB framework yields a robust numerical scheme that can efficiently handle immersed deformable structures. Additionally, the IB method has been adapted to problems with prescribed motion and other PDEs with given boundary data. IB methods for these problems traditionally involve penalty forces which only approximately satisfy boundary conditions, or they are formulated as constraint problems. In the latter approach, one must find the unknown forces by solving an equation that corresponds to a poorly conditioned first-kind integral equation. This operation can require a large number of iterations of a Krylov method, and since a time-dependent problem requires this solve at each time step, this method can be prohibitively inefficient without preconditioning. In this work, we introduce a new, well-conditioned IB formulation for boundary value problems, which we call the Immersed Boundary Double Layer (IBDL) method. We present the method as it applies to Poisson and Helmholtz problems to demonstrate its efficiency over the original constraint method. In this double layer formulation, the equation for the unknown boundary distribution corresponds to a well-conditioned second-kind integral equation that can be solved efficiently with a small number of iterations of a Krylov method. Furthermore, the iteration count is independent of both the mesh size and immersed boundary point spacing. The method converges away from the boundary, and when combined with a local interpolation, it converges in the entire PDE domain. Additionally, while the original constraint method applies only to Dirichlet problems, the IBDL formulation can also be used for Neumann conditions.
To integrate large systems of nonlinear differential equations in time, we consider a variant of nonlinear waveform relaxation (also known as dynamic iteration or Picard-Lindel\"of iteration), where at each iteration a linear inhomogeneous system of differential equations has to be solved. This is done by the exponential block Krylov subspace (EBK) method. Thus, we have an inner-outer iterative method, where iterative approximations are determined over a certain time interval, with no time stepping involved. This approach has recently been shown to be efficient as a time-parallel integrator within the PARAEXP framework. In this paper, convergence behavior of this method is assessed theoretically and practically. We examine efficiency of the method by testing it on nonlinear Burgers and Liouville-Bratu-Gelfand equations and comparing its performance with that of conventional time-stepping integrators.
Linear wave equations sourced by a Dirac delta distribution $\delta(x)$ and its derivative(s) can serve as a model for many different phenomena. We describe a discontinuous Galerkin (DG) method to numerically solve such equations with source terms proportional to $\partial^n \delta /\partial x^n$. Despite the presence of singular source terms, which imply discontinuous or potentially singular solutions, our DG method achieves global spectral accuracy even at the source's location. Our DG method is developed for the wave equation written in fully first-order form. The first-order reduction is carried out using a distributional auxiliary variable that removes some of the source term's singular behavior. While this is helpful numerically, it gives rise to a distributional constraint. We show that a time-independent spurious solution can develop if the initial constraint violation is proportional to $\delta(x)$. Numerical experiments verify this behavior and our scheme's convergence properties by comparing against exact solutions.
For neurological disorders and diseases, functional and anatomical connectomes of the human brain can be used to better inform targeted interventions and treatment strategies. Functional magnetic resonance imaging (fMRI) is a non-invasive neuroimaging technique that captures spatio-temporal brain function through blood flow over time. FMRI can be used to study the functional connectome through the functional connectivity matrix; that is, Pearson's correlation matrix between time series from the regions of interest of an fMRI image. One approach to analysing functional connectivity is using partial least squares (PLS), a multivariate regression technique designed for high-dimensional predictor data. However, analysing functional connectivity with PLS ignores a key property of the functional connectivity matrix; namely, these matrices are positive definite. To account for this, we introduce a generalisation of PLS to Riemannian manifolds, called R-PLS, and apply it to symmetric positive definite matrices with the affine invariant geometry. We apply R-PLS to two functional imaging datasets: COBRE, which investigates functional differences between schizophrenic patients and healthy controls, and; ABIDE, which compares people with autism spectrum disorder and neurotypical controls. Using the variable importance in the projection statistic on the results of R-PLS, we identify key functional connections in each dataset that are well represented in the literature. Given the generality of R-PLS, this method has potential to open up new avenues for multi-model imaging analysis linking structural and functional connectomics.
Substantial progress has been made recently on developing provably accurate and efficient algorithms for low-rank matrix factorization via nonconvex optimization. While conventional wisdom often takes a dim view of nonconvex optimization algorithms due to their susceptibility to spurious local minima, simple iterative methods such as gradient descent have been remarkably successful in practice. The theoretical footings, however, had been largely lacking until recently. In this tutorial-style overview, we highlight the important role of statistical models in enabling efficient nonconvex optimization with performance guarantees. We review two contrasting approaches: (1) two-stage algorithms, which consist of a tailored initialization step followed by successive refinement; and (2) global landscape analysis and initialization-free algorithms. Several canonical matrix factorization problems are discussed, including but not limited to matrix sensing, phase retrieval, matrix completion, blind deconvolution, robust principal component analysis, phase synchronization, and joint alignment. Special care is taken to illustrate the key technical insights underlying their analyses. This article serves as a testament that the integrated consideration of optimization and statistics leads to fruitful research findings.