For neurological disorders and diseases, functional and anatomical connectomes of the human brain can be used to better inform targeted interventions and treatment strategies. Functional magnetic resonance imaging (fMRI) is a non-invasive neuroimaging technique that captures spatio-temporal brain function through blood flow over time. FMRI can be used to study the functional connectome through the functional connectivity matrix; that is, Pearson's correlation matrix between time series from the regions of interest of an fMRI image. One approach to analysing functional connectivity is using partial least squares (PLS), a multivariate regression technique designed for high-dimensional predictor data. However, analysing functional connectivity with PLS ignores a key property of the functional connectivity matrix; namely, these matrices are positive definite. To account for this, we introduce a generalisation of PLS to Riemannian manifolds, called R-PLS, and apply it to symmetric positive definite matrices with the affine invariant geometry. We apply R-PLS to two functional imaging datasets: COBRE, which investigates functional differences between schizophrenic patients and healthy controls, and; ABIDE, which compares people with autism spectrum disorder and neurotypical controls. Using the variable importance in the projection statistic on the results of R-PLS, we identify key functional connections in each dataset that are well represented in the literature. Given the generality of R-PLS, this method has potential to open up new avenues for multi-model imaging analysis linking structural and functional connectomics.
Differential geometric approaches are ubiquitous in several fields of mathematics, physics and engineering, and their discretizations enable the development of network-based mathematical and computational frameworks, which are essential for large-scale data science. The Forman-Ricci curvature (FRC) - a statistical measure based on Riemannian geometry and designed for networks - is known for its high capacity for extracting geometric information from complex networks. However, extracting information from dense networks is still challenging due to the combinatorial explosion of high-order network structures. Motivated by this challenge we sought a set-theoretic representation theory for high-order network cells and FRC, as well as their associated concepts and properties, which together provide an alternative and efficient formulation for computing high-order FRC in complex networks. We provide a pseudo-code, a software implementation coined FastForman, as well as a benchmark comparison with alternative implementations. Crucially, our representation theory reveals previous computational bottlenecks and also accelerates the computation of FRC. As a consequence, our findings open new research possibilities in complex systems where higher-order geometric computations are required.
Stochastic multi-scale modeling and simulation for nonlinear thermo-mechanical problems of composite materials with complicated random microstructures remains a challenging issue. In this paper, we develop a novel statistical higher-order multi-scale (SHOMS) method for nonlinear thermo-mechanical simulation of random composite materials, which is designed to overcome limitations of prohibitive computation involving the macro-scale and micro-scale. By virtue of statistical multi-scale asymptotic analysis and Taylor series method, the SHOMS computational model is rigorously derived for accurately analyzing nonlinear thermo-mechanical responses of random composite materials both in the macro-scale and micro-scale. Moreover, the local error analysis of SHOMS solutions in the point-wise sense clearly illustrates the crucial indispensability of establishing the higher-order asymptotic corrected terms in SHOMS computational model for keeping the conservation of local energy and momentum. Then, the corresponding space-time multi-scale numerical algorithm with off-line and on-line stages is designed to efficiently simulate nonlinear thermo-mechanical behaviors of random composite materials. Finally, extensive numerical experiments are presented to gauge the efficiency and accuracy of the proposed SHOMS approach.
We propose a continuous model for meniscus cartilage regeneration triggered by two populations of cells migrating and (de)differentiating within an artificial scaffold with a known structure. The described biological processes are influenced by a fluid flow and therewith induced deformations of the scaffold. Numerical simulations are done for the corresponding dynamics within a bioreactor which was designed for performing the biological experiments.
Ghost, or fictitious points allow to capture boundary conditions that are not located on the finite difference grid discretization. We explore in this paper the impact of ghost points on the stability of the explicit Euler finite difference scheme in the context of the diffusion equation. In particular, we consider the case of a one-touch option under the Black-Scholes model. The observations and results are however valid for a much wider range of financial contracts and models.
Medical studies for chronic disease are often interested in the relation between longitudinal risk factor profiles and individuals' later life disease outcomes. These profiles may typically be subject to intermediate structural changes due to treatment or environmental influences. Analysis of such studies may be handled by the joint model framework. However, current joint modeling does not consider structural changes in the residual variability of the risk profile nor consider the influence of subject-specific residual variability on the time-to-event outcome. In the present paper, we extend the joint model framework to address these two heterogeneous intra-individual variabilities. A Bayesian approach is used to estimate the unknown parameters and simulation studies are conducted to investigate the performance of the method. The proposed joint model is applied to the Framingham Heart Study to investigate the influence of anti-hypertensive medication on the systolic blood pressure variability together with its effect on the risk of developing cardiovascular disease. We show that anti-hypertensive medication is associated with elevated systolic blood pressure variability and increased variability elevates risk of developing cardiovascular disease.
The distributed task allocation problem, as one of the most interesting distributed optimization challenges, has received considerable research attention recently. Previous works mainly focused on the task allocation problem in a population of individuals, where there are no constraints for affording task amounts. The latter condition, however, cannot always be hold. In this paper, we study the task allocation problem with constraints of task allocation in a game-theoretical framework. We assume that each individual can afford different amounts of task and the cost function is convex. To investigate the problem in the framework of population games, we construct a potential game and calculate the fitness function for each individual. We prove that when the Nash equilibrium point in the potential game is in the feasible solutions for the limited task allocation problem, the Nash equilibrium point is the unique globally optimal solution. Otherwise, we also derive analytically the unique globally optimal solution. In addition, in order to confirm our theoretical results, we consider the exponential and quadratic forms of cost function for each agent. Two algorithms with the mentioned representative cost functions are proposed to numerically seek the optimal solution to the limited task problems. We further perform Monte Carlo simulations which provide agreeing results with our analytical calculations.
Quantization summarizes continuous distributions by calculating a discrete approximation. Among the widely adopted methods for data quantization is Lloyd's algorithm, which partitions the space into Vorono\"i cells, that can be seen as clusters, and constructs a discrete distribution based on their centroids and probabilistic masses. Lloyd's algorithm estimates the optimal centroids in a minimal expected distance sense, but this approach poses significant challenges in scenarios where data evaluation is costly, and relates to rare events. Then, the single cluster associated to no event takes the majority of the probability mass. In this context, a metamodel is required and adapted sampling methods are necessary to increase the precision of the computations on the rare clusters.
In the context of finite sums minimization, variance reduction techniques are widely used to improve the performance of state-of-the-art stochastic gradient methods. Their practical impact is clear, as well as their theoretical properties. Stochastic proximal point algorithms have been studied as an alternative to stochastic gradient algorithms since they are more stable with respect to the choice of the stepsize but a proper variance reduced version is missing. In this work, we propose the first study of variance reduction techniques for stochastic proximal point algorithms. We introduce a stochastic proximal version of SVRG, SAGA, and some of their variants for smooth and convex functions. We provide several convergence results for the iterates and the objective function values. In addition, under the Polyak-{\L}ojasiewicz (PL) condition, we obtain linear convergence rates for the iterates and the function values. Our numerical experiments demonstrate the advantages of the proximal variance reduction methods over their gradient counterparts, especially about the stability with respect to the choice of the step size.
Simulation of wave propagation in poroelastic half-spaces presents a common challenge in fields like geomechanics and biomechanics, requiring Absorbing Boundary Conditions (ABCs) at the semi-infinite space boundaries. Perfectly Matched Layers (PML) are a popular choice due to their excellent wave absorption properties. However, PML implementation can lead to problems with unknown stresses or strains, time convolutions, or PDE systems with Auxiliary Differential Equations (ADEs), which increases computational complexity and resource consumption. This article presents two new PML formulations for arbitrary poroelastic domains. The first formulation is a fully-mixed form that employs time-history variables instead of ADEs, reducing the number of unknowns and mathematical operations. The second formulation is a hybrid form that restricts the fully-mixed formulation to the PML domain, resulting in smaller matrices for the solver while preserving governing equations in the interior domain. The fully-mixed formulation introduces three scalar variables over the whole domain, whereas the hybrid form confines them to the PML domain. The proposed formulations were tested in three numerical experiments in geophysics using realistic parameters for soft sites with free surfaces. The results were compared with numerical solutions from extended domains and simpler ABCs, such as paraxial approximation, demonstrating the accuracy, efficiency, and precision of the proposed methods. The article also discusses the applicability of these methods to complex media and their extension to the Multiaxial PML formulation. The codes for the simulations are available for download from \url{//github.com/hmella/POROUS-HYBRID-PML}.
A central problem in computational statistics is to convert a procedure for sampling combinatorial from an objects into a procedure for counting those objects, and vice versa. Weconsider sampling problems coming from *Gibbs distributions*, which are probability distributions of the form $\mu^\Omega_\beta(\omega) \propto e^{\beta H(\omega)}$ for $\beta$ in an interval $[\beta_\min, \beta_\max]$ and $H( \omega ) \in \{0 \} \cup [1, n]$. The *partition function* is the normalization factor $Z(\beta)=\sum_{\omega \in\Omega}e^{\beta H(\omega)}$. Two important parameters are the log partition ratio $q = \log \tfrac{Z(\beta_\max)}{Z(\beta_\min)}$ and the vector of counts $c_x = |H^{-1}(x)|$. Our first result is an algorithm to estimate the counts $c_x$ using roughly $\tilde O( \frac{q}{\epsilon^2})$ samples for general Gibbs distributions and $\tilde O( \frac{n^2}{\epsilon^2} )$ samples for integer-valued distributions (ignoring some second-order terms and parameters). We show this is optimal up to logarithmic factors. We illustrate with improved algorithms for counting connected subgraphs and perfect matchings in a graph. We develop a key subroutine for global estimation of the partition function. Specifically, we produce a data structure to estimate $Z(\beta)$ for \emph{all} values $\beta$, without further samples. Constructing the data structure requires $O(\frac{q \log n}{\epsilon^2})$ samples for general Gibbs distributions and $O(\frac{n^2 \log n}{\epsilon^2} + n \log q)$ samples for integer-valued distributions. This improves over a prior algorithm of Kolmogorov (2018) which computes the single point estimate $Z(\beta_\max)$ using $\tilde O(\frac{q}{\epsilon^2})$ samples. We also show that this complexity is optimal as a function of $n$ and $q$ up to logarithmic terms.