亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We propose a continuous model for meniscus cartilage regeneration triggered by two populations of cells migrating and (de)differentiating within an artificial scaffold with a known structure. The described biological processes are influenced by a fluid flow and therewith induced deformations of the scaffold. Numerical simulations are done for the corresponding dynamics within a bioreactor which was designed for performing the biological experiments.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · 即時定位與地圖構建 · Performer · 正則化項 · 真實值 ·
2023 年 10 月 10 日

Computer-assisted systems are becoming broadly used in medicine. In endoscopy, most research focuses on the automatic detection of polyps or other pathologies, but localization and navigation of the endoscope are completely performed manually by physicians. To broaden this research and bring spatial Artificial Intelligence to endoscopies, data from complete procedures is needed. This paper introduces the Endomapper dataset, the first collection of complete endoscopy sequences acquired during regular medical practice, making secondary use of medical data. Its main purpose is to facilitate the development and evaluation of Visual Simultaneous Localization and Mapping (VSLAM) methods in real endoscopy data. The dataset contains more than 24 hours of video. It is the first endoscopic dataset that includes endoscope calibration as well as the original calibration videos. Meta-data and annotations associated with the dataset vary from the anatomical landmarks, procedure labeling, segmentations, reconstructions, simulated sequences with ground truth and same patient procedures. The software used in this paper is publicly available.

Private synthetic data sharing is preferred as it keeps the distribution and nuances of original data compared to summary statistics. The state-of-the-art methods adopt a select-measure-generate paradigm, but measuring large domain marginals still results in much error and allocating privacy budget iteratively is still difficult. To address these issues, our method employs a partition-based approach that effectively reduces errors and improves the quality of synthetic data, even with a limited privacy budget. Results from our experiments demonstrate the superiority of our method over existing approaches. The synthetic data produced using our approach exhibits improved quality and utility, making it a preferable choice for private synthetic data sharing.

We investigate block diagonal and hierarchical nested stochastic multivariate Gaussian models by studying their sample cross-correlation matrix on high dimensions. By performing numerical simulations, we compare a filtered sample cross-correlation with the population cross-correlation matrices by using several rotationally invariant estimators (RIE) and hierarchical clustering estimators (HCE) under several loss functions. We show that at large but finite sample size, sample cross-correlation filtered by RIE estimators are often outperformed by HCE estimators for several of the loss functions. We also show that for block models and for hierarchically nested block models the best determination of the filtered sample cross-correlation is achieved by introducing two-step estimators combining state-of-the-art non-linear shrinkage models with hierarchical clustering estimators.

A physics-informed convolutional neural network is proposed to simulate two phase flow in porous media with time-varying well controls. While most of PICNNs in existing literatures worked on parameter-to-state mapping, our proposed network parameterizes the solution with time-varying controls to establish a control-to-state regression. Firstly, finite volume scheme is adopted to discretize flow equations and formulate loss function that respects mass conservation laws. Neumann boundary conditions are seamlessly incorporated into the semi-discretized equations so no additional loss term is needed. The network architecture comprises two parallel U-Net structures, with network inputs being well controls and outputs being the system states. To capture the time-dependent relationship between inputs and outputs, the network is well designed to mimic discretized state space equations. We train the network progressively for every timestep, enabling it to simultaneously predict oil pressure and water saturation at each timestep. After training the network for one timestep, we leverage transfer learning techniques to expedite the training process for subsequent timestep. The proposed model is used to simulate oil-water porous flow scenarios with varying reservoir gridblocks and aspects including computation efficiency and accuracy are compared against corresponding numerical approaches. The results underscore the potential of PICNN in effectively simulating systems with numerous grid blocks, as computation time does not scale with model dimensionality. We assess the temporal error using 10 different testing controls with variation in magnitude and another 10 with higher alternation frequency with proposed control-to-state architecture. Our observations suggest the need for a more robust and reliable model when dealing with controls that exhibit significant variations in magnitude or frequency.

In clinical trials of longitudinal continuous outcomes, reference based imputation (RBI) has commonly been applied to handle missing outcome data in settings where the estimand incorporates the effects of intercurrent events, e.g. treatment discontinuation. RBI was originally developed in the multiple imputation framework, however recently conditional mean imputation (CMI) combined with the jackknife estimator of the standard error was proposed as a way to obtain deterministic treatment effect estimates and correct frequentist inference. For both multiple and CMI, a mixed model for repeated measures (MMRM) is often used for the imputation model, but this can be computationally intensive to fit to multiple data sets (e.g. the jackknife samples) and lead to convergence issues with complex MMRM models with many parameters. Therefore, a step-wise approach based on sequential linear regression (SLR) of the outcomes at each visit was developed for the imputation model in the multiple imputation framework, but similar developments in the CMI framework are lacking. In this article, we fill this gap in the literature by proposing a SLR approach to implement RBI in the CMI framework, and justify its validity using theoretical results and simulations. We also illustrate our proposal on a real data application.

The detection of Alzheimer's disease (AD) from spontaneous speech has attracted increasing attention while the sparsity of training data remains an important issue. This paper handles the issue by knowledge transfer, specifically from both speech-generic and depression-specific knowledge. The paper first studies sequential knowledge transfer from generic foundation models pretrained on large amounts of speech and text data. A block-wise analysis is performed for AD diagnosis based on the representations extracted from different intermediate blocks of different foundation models. Apart from the knowledge from speech-generic representations, this paper also proposes to simultaneously transfer the knowledge from a speech depression detection task based on the high comorbidity rates of depression and AD. A parallel knowledge transfer framework is studied that jointly learns the information shared between these two tasks. Experimental results show that the proposed method improves AD and depression detection, and produces a state-of-the-art F1 score of 0.928 for AD diagnosis on the commonly used ADReSSo dataset.

Logical modeling is a powerful tool in biology, offering a system-level understanding of the complex interactions that govern biological processes. A gap that hinders the scalability of logical models is the need to specify the update function of every vertex in the network depending on the status of its predecessors. To address this, we introduce in this paper the concept of strong regulation, where a vertex is only updated to active/inactive if all its predecessors agree in their influences; otherwise, it is set to ambiguous. We explore the interplay between active, inactive, and ambiguous influences in a network. We discuss the existence of phenotype attractors in such networks, where the status of some of the variables is fixed to active/inactive, while the others can have an arbitrary status, including ambiguous.

This paper aims to shed light on the evolutionary dynamics of diverse and social populations by introducing the rich expressiveness of generative models into the trait expression of social agent-based evolutionary models. Specifically, we focus on the evolution of personality traits in the context of a game-theoretic relationship as a situation in which inter-individual interests exert strong selection pressures. We construct an agent model in which linguistic descriptions of personality traits related to cooperative behavior are used as genes. The deterministic strategies extracted from Large Language Model (LLM) that make behavioral decisions based on these personality traits are used as behavioral traits. The population is evolved according to selection based on average payoff and mutation of genes by asking LLM to slightly modify the parent gene toward cooperative or selfish. Through preliminary experiments and analyses, we clarify that such a model can indeed exhibit the evolution of cooperative behavior based on the diverse and higher-order representation of personality traits. We also observed the repeated intrusion of cooperative and selfish personality traits through changes in the expression of personality traits, and found that the emerging words in the evolved gene well reflected the behavioral tendency of its personality in terms of their semantics.

The goal of explainable Artificial Intelligence (XAI) is to generate human-interpretable explanations, but there are no computationally precise theories of how humans interpret AI generated explanations. The lack of theory means that validation of XAI must be done empirically, on a case-by-case basis, which prevents systematic theory-building in XAI. We propose a psychological theory of how humans draw conclusions from saliency maps, the most common form of XAI explanation, which for the first time allows for precise prediction of explainee inference conditioned on explanation. Our theory posits that absent explanation humans expect the AI to make similar decisions to themselves, and that they interpret an explanation by comparison to the explanations they themselves would give. Comparison is formalized via Shepard's universal law of generalization in a similarity space, a classic theory from cognitive science. A pre-registered user study on AI image classifications with saliency map explanations demonstrate that our theory quantitatively matches participants' predictions of the AI.

When and why can a neural network be successfully trained? This article provides an overview of optimization algorithms and theory for training neural networks. First, we discuss the issue of gradient explosion/vanishing and the more general issue of undesirable spectrum, and then discuss practical solutions including careful initialization and normalization methods. Second, we review generic optimization methods used in training neural networks, such as SGD, adaptive gradient methods and distributed methods, and theoretical results for these algorithms. Third, we review existing research on the global issues of neural network training, including results on bad local minima, mode connectivity, lottery ticket hypothesis and infinite-width analysis.

北京阿比特科技有限公司