亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We propose a novel framework that combines deep generative time series models with decision theory for generating personalized treatment strategies. It leverages historical patient trajectory data to jointly learn the generation of realistic personalized treatment and future outcome trajectories through deep generative time series models. In particular, our framework enables the generation of novel multivariate treatment strategies tailored to the personalized patient history and trained for optimal expected future outcomes based on conditional expected utility maximization. We demonstrate our framework by generating personalized insulin treatment strategies and blood glucose predictions for hospitalized diabetes patients, showcasing the potential of our approach for generating improved personalized treatment strategies. Keywords: deep generative model, probabilistic decision support, personalized treatment generation, insulin and blood glucose prediction

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · MoDELS · 向量空間 · 推斷 · 馬爾可夫鏈蒙特卡羅 ·
2023 年 11 月 13 日

Structured additive distributional regression models offer a versatile framework for estimating complete conditional distributions by relating all parameters of a parametric distribution to covariates. Although these models efficiently leverage information in vast and intricate data sets, they often result in highly-parameterized models with many unknowns. Standard estimation methods, like Bayesian approaches based on Markov chain Monte Carlo methods, face challenges in estimating these models due to their complexity and costliness. To overcome these issues, we suggest a fast and scalable alternative based on variational inference. Our approach combines a parsimonious parametric approximation for the posteriors of regression coefficients, with the exact conditional posterior for hyperparameters. For optimization, we use a stochastic gradient ascent method combined with an efficient strategy to reduce the variance of estimators. We provide theoretical properties and investigate global and local annealing to enhance robustness, particularly against data outliers. Our implementation is very general, allowing us to include various functional effects like penalized splines or complex tensor product interactions. In a simulation study, we demonstrate the efficacy of our approach in terms of accuracy and computation time. Lastly, we present two real examples illustrating the modeling of infectious COVID-19 outbreaks and outlier detection in brain activity.

We propose a novel iterative numerical method to solve the three-dimensional inverse obstacle scattering problem of recovering the shape of the obstacle from far-field measurements. To address the inherent ill-posed nature of the inverse problem, we advocate the use of a trained latent representation of surfaces as the generative prior. This prior enjoys excellent expressivity within the given class of shapes, and meanwhile, the latent dimensionality is low, which greatly facilitates the computation. Thus, the admissible manifold of surfaces is realistic and the resulting optimization problem is less ill-posed. We employ the shape derivative to evolve the latent surface representation, by minimizing the loss, and we provide a local convergence analysis of a gradient descent type algorithm to a stationary point of the loss. We present several numerical examples, including also backscattered and phaseless data, to showcase the effectiveness of the proposed algorithm.

Path reasoning methods over knowledge graphs have gained popularity for their potential to improve transparency in recommender systems. However, the resulting models still rely on pre-trained knowledge graph embeddings, fail to fully exploit the interdependence between entities and relations in the KG for recommendation, and may generate inaccurate explanations. In this paper, we introduce PEARLM, a novel approach that efficiently captures user behaviour and product-side knowledge through language modelling. With our approach, knowledge graph embeddings are directly learned from paths over the KG by the language model, which also unifies entities and relations in the same optimisation space. Constraints on the sequence decoding additionally guarantee path faithfulness with respect to the KG. Experiments on two datasets show the effectiveness of our approach compared to state-of-the-art baselines. Source code and datasets: AVAILABLE AFTER GETTING ACCEPTED.

In the field of intelligent multimedia analysis, ultra-fine-grained visual categorization (Ultra-FGVC) plays a vital role in distinguishing intricate subcategories within broader categories. However, this task is inherently challenging due to the complex granularity of category subdivisions and the limited availability of data for each category. To address these challenges, this work proposes CSDNet, a pioneering framework that effectively explores contrastive learning and self-distillation to learn discriminative representations specifically designed for Ultra-FGVC tasks. CSDNet comprises three main modules: Subcategory-Specific Discrepancy Parsing (SSDP), Dynamic Discrepancy Learning (DDL), and Subcategory-Specific Discrepancy Transfer (SSDT), which collectively enhance the generalization of deep models across instance, feature, and logit prediction levels. To increase the diversity of training samples, the SSDP module introduces augmented samples from different viewpoints to spotlight subcategory-specific discrepancies. Simultaneously, the proposed DDL module stores historical intermediate features by a dynamic memory queue, which optimizes the feature learning space through iterative contrastive learning. Furthermore, the SSDT module is developed by a novel self-distillation paradigm at the logit prediction level of raw and augmented samples, which effectively distills more subcategory-specific discrepancies knowledge from the inherent structure of limited training data without requiring additional annotations. Experimental results demonstrate that CSDNet outperforms current state-of-the-art Ultra-FGVC methods, emphasizing its powerful efficacy and adaptability in addressing Ultra-FGVC tasks.

Matching a source to a target probability measure is often solved by instantiating a linear optimal transport (OT) problem, parameterized by a ground cost function that quantifies discrepancy between points. When these measures live in the same metric space, the ground cost often defaults to its distance. When instantiated across two different spaces, however, choosing that cost in the absence of aligned data is a conundrum. As a result, practitioners often resort to solving instead a quadratic Gromow-Wasserstein (GW) problem. We exploit in this work a parallel between GW and cost-regularized OT, the regularized minimization of a linear OT objective parameterized by a ground cost. We use this cost-regularized formulation to match measures across two different Euclidean spaces, where the cost is evaluated between transformed source points and target points. We show that several quadratic OT problems fall in this category, and consider enforcing structure in linear transform (e.g. sparsity), by introducing structure-inducing regularizers. We provide a proximal algorithm to extract such transforms from unaligned data, and demonstrate its applicability to single-cell spatial transcriptomics/multiomics matching tasks.

We propose a novel method that trains a conditional Generative Adversarial Network (GAN) to generate visual interpretations of a Convolutional Neural Network (CNN). To comprehend a CNN, the GAN is trained with information on how the CNN processes an image when making predictions. Supplying that information has two main challenges: how to represent this information in a form that is feedable to the GANs and how to effectively feed the representation to the GAN. To address these issues, we developed a suitable representation of CNN architectures by cumulatively averaging intermediate interpretation maps. We also propose two alternative approaches to feed the representations to the GAN and to choose an effective training strategy. Our approach learned the general aspects of CNNs and was agnostic to datasets and CNN architectures. The study includes both qualitative and quantitative evaluations and compares the proposed GANs with state-of-the-art approaches. We found that the initial layers of CNNs and final layers are equally crucial for interpreting CNNs upon interpreting the proposed GAN. We believe training a GAN to interpret CNNs would open doors for improved interpretations by leveraging fast-paced deep learning advancements. The code used for experimentation is publicly available at //github.com/Akash-guna/Explain-CNN-With-GANS

AI recommender systems are sought for decision support by providing suggestions to operators responsible for making final decisions. However, these systems are typically considered black boxes, and are often presented without any context or insight into the underlying algorithm. As a result, recommender systems can lead to miscalibrated user reliance and decreased situation awareness. Recent work has focused on improving the transparency of recommender systems in various ways such as improving the recommender's analysis and visualization of the figures of merit, providing explanations for the recommender's decision, as well as improving user training or calibrating user trust. In this paper, we introduce an alternative transparency technique of structuring the order in which contextual information and the recommender's decision are shown to the human operator. This technique is designed to improve the operator's situation awareness and therefore the shared situation awareness between the operator and the recommender system. This paper presents the results of a two-phase between-subjects study in which participants and a recommender system jointly make a high-stakes decision. We varied the amount of contextual information the participant had, the assessment technique of the figures of merit, and the reliability of the recommender system. We found that providing contextual information upfront improves the team's shared situation awareness by improving the human decision maker's initial and final judgment, as well as their ability to discern the recommender's error boundary. Additionally, this technique accurately calibrated the human operator's trust in the recommender. This work proposes and validates a way to provide model-agnostic transparency into AI systems that can support the human decision maker and lead to improved team performance.

The accurate and interpretable prediction of future events in time-series data often requires the capturing of representative patterns (or referred to as states) underpinning the observed data. To this end, most existing studies focus on the representation and recognition of states, but ignore the changing transitional relations among them. In this paper, we present evolutionary state graph, a dynamic graph structure designed to systematically represent the evolving relations (edges) among states (nodes) along time. We conduct analysis on the dynamic graphs constructed from the time-series data and show that changes on the graph structures (e.g., edges connecting certain state nodes) can inform the occurrences of events (i.e., time-series fluctuation). Inspired by this, we propose a novel graph neural network model, Evolutionary State Graph Network (EvoNet), to encode the evolutionary state graph for accurate and interpretable time-series event prediction. Specifically, Evolutionary State Graph Network models both the node-level (state-to-state) and graph-level (segment-to-segment) propagation, and captures the node-graph (state-to-segment) interactions over time. Experimental results based on five real-world datasets show that our approach not only achieves clear improvements compared with 11 baselines, but also provides more insights towards explaining the results of event predictions.

Translational distance-based knowledge graph embedding has shown progressive improvements on the link prediction task, from TransE to the latest state-of-the-art RotatE. However, N-1, 1-N and N-N predictions still remain challenging. In this work, we propose a novel translational distance-based approach for knowledge graph link prediction. The proposed method includes two-folds, first we extend the RotatE from 2D complex domain to high dimension space with orthogonal transforms to model relations for better modeling capacity. Second, the graph context is explicitly modeled via two directed context representations. These context representations are used as part of the distance scoring function to measure the plausibility of the triples during training and inference. The proposed approach effectively improves prediction accuracy on the difficult N-1, 1-N and N-N cases for knowledge graph link prediction task. The experimental results show that it achieves better performance on two benchmark data sets compared to the baseline RotatE, especially on data set (FB15k-237) with many high in-degree connection nodes.

High spectral dimensionality and the shortage of annotations make hyperspectral image (HSI) classification a challenging problem. Recent studies suggest that convolutional neural networks can learn discriminative spatial features, which play a paramount role in HSI interpretation. However, most of these methods ignore the distinctive spectral-spatial characteristic of hyperspectral data. In addition, a large amount of unlabeled data remains an unexploited gold mine for efficient data use. Therefore, we proposed an integration of generative adversarial networks (GANs) and probabilistic graphical models for HSI classification. Specifically, we used a spectral-spatial generator and a discriminator to identify land cover categories of hyperspectral cubes. Moreover, to take advantage of a large amount of unlabeled data, we adopted a conditional random field to refine the preliminary classification results generated by GANs. Experimental results obtained using two commonly studied datasets demonstrate that the proposed framework achieved encouraging classification accuracy using a small number of data for training.

北京阿比特科技有限公司