Coloring unit-disk graphs efficiently is an important problem in the global and distributed setting, with applications in radio channel assignment problems when the communication relies on omni-directional antennas of the same power. In this context it is important to bound not only the complexity of the coloring algorithms, but also the number of colors used. In this paper, we consider two natural distributed settings. In the location-aware setting (when nodes know their coordinates in the plane), we give a constant time distributed algorithm coloring any unit-disk graph $G$ with at most $4\omega(G)$ colors, where $\omega(G)$ is the clique number of $G$. This improves upon a classical 3-approximation algorithm for this problem, for all unit-disk graphs whose chromatic number significantly exceeds their clique number. When nodes do not know their coordinates in the plane, we give a distributed algorithm in the LOCAL model that colors every unit-disk graph $G$ with at most $5.68\omega(G)$ colors in $O(\log^3 \log n)$ rounds. Moreover, when $\omega(G)=O(1)$, the algorithm runs in $O(\log^* n)$ rounds. This algorithm is based on a study of the local structure of unit-disk graphs, which is of independent interest. We conjecture that every unit-disk graph $G$ has average degree at most $4\omega(G)$, which would imply the existence of a $O(\log n)$ round algorithm coloring any unit-disk graph $G$ with (approximately) $4\omega(G)$ colors in the LOCAL model.
We revisit the task of computing the edit distance in sublinear time. In the $(k,K)$-gap edit distance problem the task is to distinguish whether the edit distance of two strings is at most $k$ or at least $K$. It has been established by Goldenberg, Krauthgamer and Saha (FOCS '19), with improvements by Kociumaka and Saha (FOCS '20), that the $(k,k^2)$-gap problem can be solved in time $\widetilde O(n/k+\operatorname{poly}(k))$. One of the most natural questions in this line of research is whether the $(k,k^2)$-gap is best-possible for the running time $\widetilde O(n/k+\operatorname{poly}(k))$. In this work we answer this question by significantly improving the gap. Specifically, we show that in time $O(n/k+\operatorname{poly}(k))$ we can even solve the $(k,k^{1+o(1)})$-gap problem. This is the first algorithm that breaks the $(k,k^2)$-gap in this running time. Our algorithm is almost optimal in the following sense: In the low distance regime ($k\le n^{0.19}$) our running time becomes $O(n/k)$, which matches a known $n/k^{1+o(1)}$ lower bound for the $(k,k^{1+o(1)})$-gap problem up to lower order factors. Our result also reveals a surprising similarity of Hamming distance and edit distance in the low distance regime: For both, the $(k,k^{1+o(1)})$-gap problem has time complexity $n/k^{1\pm o(1)}$ for small $k$. In contrast to previous work, which employed a subsampled variant of the Landau-Vishkin algorithm, we instead build upon the algorithm of Andoni, Krauthgamer and Onak (FOCS '10). We first simplify their approach and then show how to to effectively prune their computation tree in order to obtain a sublinear-time algorithm in the given time bound. Towards that, we use a variety of structural insights on the (local and global) patterns that can emerge during this process and design appropriate property testers to effectively detect these patterns.
We consider the problem of partitioning a graph into a non-fixed number of non-overlapping subgraphs of maximum density. The density of a partition is the sum of the densities of the subgraphs, where the density of a subgraph is its average degree, that is, the ratio of its number of edges and its number of vertices. This problem, called Dense Graph Partition, is known to be NP-hard on general graphs and polynomial-time solvable on trees, and polynomial-time 2-approximable. In this paper we study the restriction of Dense Graph Partition to particular sparse and dense graph classes. In particular, we prove that it is NP-hard on dense bipartite graphs as well as on cubic graphs. On dense graphs on $n$ vertices, it is polynomial-time solvable on graphs with minimum degree $n-3$ and NP-hard on $(n-4)$-regular graphs. We prove that it is polynomial-time $4/3$-approximable on cubic graphs and admits an efficient polynomial-time approximation scheme on graphs of minimum degree $n-t$ for any constant $t\geq 4$.
Motivated by alignment of correlated sparse random graphs, we introduce a hypothesis testing problem of deciding whether or not two random trees are correlated. We obtain sufficient conditions under which this testing is impossible or feasible. We propose MPAlign, a message-passing algorithm for graph alignment inspired by the tree correlation detection problem. We prove MPAlign to succeed in polynomial time at partial alignment whenever tree detection is feasible. As a result our analysis of tree detection reveals new ranges of parameters for which partial alignment of sparse random graphs is feasible in polynomial time. We then conjecture that graph alignment is not feasible in polynomial time when the associated tree detection problem is impossible. If true, this conjecture together with our sufficient conditions on tree detection impossibility would imply the existence of a hard phase for graph alignment, i.e. a parameter range where alignment cannot be done in polynomial time even though it is known to be feasible in non-polynomial time.
We investigate the maximum size of graph families on a common vertex set of cardinality $n$ such that the symmetric difference of the edge sets of any two members of the family satisfies some prescribed condition. We solve the problem completely for infinitely many values of $n$ when the prescribed condition is connectivity or $2$-connectivity, Hamiltonicity or the containment of a spanning star. We give lower and upper bounds when it is the containment of some fixed finite graph concentrating mostly on the case when this graph is the $3$-cycle or just any odd cycle. The paper ends with a collection of open problems.
A triangle in a hypergraph $\mathcal{H}$ is a set of three distinct edges $e, f, g\in\mathcal{H}$ and three distinct vertices $u, v, w\in V(\mathcal{H})$ such that $\{u, v\}\subseteq e$, $\{v, w\}\subseteq f$, $\{w, u\}\subseteq g$ and $\{u, v, w\}\cap e\cap f\cap g=\emptyset$. Johansson proved in 1996 that $\chi(G)=\mathcal{O}(\Delta/\log\Delta)$ for any triangle-free graph $G$ with maximum degree $\Delta$. Cooper and Mubayi later generalized the Johansson's theorem to all rank $3$ hypergraphs. In this paper we provide a common generalization of both these results for all hypergraphs, showing that if $\mathcal{H}$ is a rank $k$, triangle-free hypergraph, then the list chromatic number \[ \chi_{\ell}(\mathcal{H})\leq \mathcal{O}\left(\max_{2\leq \ell \leq k} \left\{\left( \frac{\Delta_{\ell}}{\log \Delta_{\ell}} \right)^{\frac{1}{\ell-1}} \right\}\right), \] where $\Delta_{\ell}$ is the maximum $\ell$-degree of $\mathcal{H}$. The result is sharp apart from the constant. Moreover, our result implies, generalizes and improves several earlier results on the chromatic number and also independence number of hypergraphs, while its proof is based on a different approach than prior works in hypergraphs (and therefore provides alternative proofs to them). In particular, as an application, we establish a bound on chromatic number of sparse hypergraphs in which each vertex is contained in few triangles, and thus extend results of Alon, Krivelevich and Sudakov, and Cooper and Mubayi from hypergraphs of rank 2 and 3, respectively, to all hypergraphs.
Using computational techniques we provide a framework for proving results on subclasses of planar graphs via discharging method. The aim of this paper is to apply these techniques to study the 2-distance coloring of planar subcubic graphs. Applying these techniques we show that every subcubic planar graph $G$ of girth at least 8 has 2-distance chromatic number at most 6.
We propose a generic mechanism for incentivizing behavior in an arbitrary finite game using payments. Doing so is trivial if the mechanism is allowed to observe all actions taken in the game, as this allows it to simply punish those agents who deviate from the intended strategy. Instead, we consider an abstraction where the mechanism probabilistically infers information about what happened in the game. We show that payment schemes can be used to implement any set of utilities if and only if the mechanism can essentially infer completely what happened. We show that finding an optimal payment scheme for games of perfect information is \textsf{P}-complete, and conjecture it to be \textsf{PPAD}-hard for games of imperfect information. We prove a lower bound on the size of the payments, showing that the payments must be linear in the intended level of security. We demonstrate the applicability of our model to concrete problems in distributed computing, namely decentralized commerce and secure multiparty computation, for which the payments match the lower bound asymptotically.
Given a directed graph $G$ and integers $k$ and $l$, a D-core is the maximal subgraph $H \subseteq G$ such that for every vertex of $H$, its in-degree and out-degree are no smaller than $k$ and $l$, respectively. For a directed graph $G$, the problem of D-core decomposition aims to compute the non-empty D-cores for all possible values of $k$ and $l$. In the literature, several \emph{peeling-based} algorithms have been proposed to handle D-core decomposition. However, the peeling-based algorithms that work in a sequential fashion and require global graph information during processing are mainly designed for \emph{centralized} settings, which cannot handle large-scale graphs efficiently in distributed settings. Motivated by this, we study the \emph{distributed} D-core decomposition problem in this paper. We start by defining a concept called \emph{anchored coreness}, based on which we propose a new H-index-based algorithm for distributed D-core decomposition. Furthermore, we devise a novel concept, namely \emph{skyline coreness}, and show that the D-core decomposition problem is equivalent to the computation of skyline corenesses for all vertices. We design an efficient D-index to compute the skyline corenesses distributedly. We implement the proposed algorithms under both vertex-centric and block-centric distributed graph processing frameworks. Moreover, we theoretically analyze the algorithm and message complexities. Extensive experiments on large real-world graphs with billions of edges demonstrate the efficiency of the proposed algorithms in terms of both the running time and communication overhead.
The aim of this work is to develop a fully-distributed algorithmic framework for training graph convolutional networks (GCNs). The proposed method is able to exploit the meaningful relational structure of the input data, which are collected by a set of agents that communicate over a sparse network topology. After formulating the centralized GCN training problem, we first show how to make inference in a distributed scenario where the underlying data graph is split among different agents. Then, we propose a distributed gradient descent procedure to solve the GCN training problem. The resulting model distributes computation along three lines: during inference, during back-propagation, and during optimization. Convergence to stationary solutions of the GCN training problem is also established under mild conditions. Finally, we propose an optimization criterion to design the communication topology between agents in order to match with the graph describing data relationships. A wide set of numerical results validate our proposal. To the best of our knowledge, this is the first work combining graph convolutional neural networks with distributed optimization.
In this paper, we study the optimal convergence rate for distributed convex optimization problems in networks. We model the communication restrictions imposed by the network as a set of affine constraints and provide optimal complexity bounds for four different setups, namely: the function $F(\xb) \triangleq \sum_{i=1}^{m}f_i(\xb)$ is strongly convex and smooth, either strongly convex or smooth or just convex. Our results show that Nesterov's accelerated gradient descent on the dual problem can be executed in a distributed manner and obtains the same optimal rates as in the centralized version of the problem (up to constant or logarithmic factors) with an additional cost related to the spectral gap of the interaction matrix. Finally, we discuss some extensions to the proposed setup such as proximal friendly functions, time-varying graphs, improvement of the condition numbers.