The dynamic behavior of RMSprop and Adam algorithms is studied through a combination of careful numerical experiments and theoretical explanations. Three types of qualitative features are observed in the training loss curve: fast initial convergence, oscillations, and large spikes in the late phase. The sign gradient descent (signGD) flow, which is the limit of Adam when taking the learning rate to 0 while keeping the momentum parameters fixed, is used to explain the fast initial convergence. For the late phase of Adam, three different types of qualitative patterns are observed depending on the choice of the hyper-parameters: oscillations, spikes, and divergence. In particular, Adam converges much smoother and even faster when the values of the two momentum factors are close to each other. This observation is particularly important for scientific computing tasks, for which the training process usually proceeds into the high precision regime.
We introduce a generic strategy for provably efficient multi-goal exploration. It relies on AdaGoal, a novel goal selection scheme that is based on a simple constrained optimization problem, which adaptively targets goal states that are neither too difficult nor too easy to reach according to the agent's current knowledge. We show how AdaGoal can be used to tackle the objective of learning an $\epsilon$-optimal goal-conditioned policy for all the goal states that are reachable within $L$ steps in expectation from a reference state $s_0$ in a reward-free Markov decision process. In the tabular case with $S$ states and $A$ actions, our algorithm requires $\tilde{O}(L^3 S A \epsilon^{-2})$ exploration steps, which is nearly minimax optimal. We also readily instantiate AdaGoal in linear mixture Markov decision processes, which yields the first goal-oriented PAC guarantee with linear function approximation. Beyond its strong theoretical guarantees, AdaGoal is anchored in the high-level algorithmic structure of existing methods for goal-conditioned deep reinforcement learning.
In this paper, we study smooth stochastic multi-level composition optimization problems, where the objective function is a nested composition of $T$ functions. We assume access to noisy evaluations of the functions and their gradients, through a stochastic first-order oracle. For solving this class of problems, we propose two algorithms using moving-average stochastic estimates, and analyze their convergence to an $\epsilon$-stationary point of the problem. We show that the first algorithm, which is a generalization of \cite{GhaRuswan20} to the $T$ level case, can achieve a sample complexity of $\mathcal{O}(1/\epsilon^6)$ by using mini-batches of samples in each iteration. By modifying this algorithm using linearized stochastic estimates of the function values, we improve the sample complexity to $\mathcal{O}(1/\epsilon^4)$. {\color{black}This modification not only removes the requirement of having a mini-batch of samples in each iteration, but also makes the algorithm parameter-free and easy to implement}. To the best of our knowledge, this is the first time that such an online algorithm designed for the (un)constrained multi-level setting, obtains the same sample complexity of the smooth single-level setting, under standard assumptions (unbiasedness and boundedness of the second moments) on the stochastic first-order oracle.
Learning the value function of a given policy from data samples is an important problem in Reinforcement Learning. TD($\lambda$) is a popular class of algorithms to solve this problem. However, the weights assigned to different $n$-step returns in TD($\lambda$), controlled by the parameter $\lambda$, decrease exponentially with increasing $n$. In this paper, we present a $\lambda$-schedule procedure that generalizes the TD($\lambda$) algorithm to the case when the parameter $\lambda$ could vary with time-step. This allows flexibility in weight assignment, i.e., the user can specify the weights assigned to different $n$-step returns by choosing a sequence $\{\lambda_t\}_{t \geq 1}$. Based on this procedure, we propose an on-policy algorithm - TD($\lambda$)-schedule, and two off-policy algorithms - GTD($\lambda$)-schedule and TDC($\lambda$)-schedule, respectively. We provide proofs of almost sure convergence for all three algorithms under a general Markov noise framework.
We critically assess the performance of several variants of dual and dual-primal domain decomposition strategies in problems with fixed subdomain partitioning and high heterogeneity in stiffness coefficients typically arising in topology optimization of modular structures. Our study considers Total FETI and FETI Dual-Primal methods along with three enhancements: k-scaling, full orthogonalization of the search directions, and considering multiple search-direction at once, which gives us twelve variants in total. We test these variants both on academic examples and snapshots of topology optimization iterations. Based on the results, we conclude that (i) the original methods exhibit very slow convergence in the presence of severe heterogeneity in stiffness coefficients, which makes them practically useless, (ii) the full orthogonalization enhancement helps only for mild heterogeneity, and (iii) the only robust method is FETI Dual-Primal with multiple search direction and k-scaling.
Fractional order models have proven to be a very useful tool for the modeling of the mechanical behaviour of viscoelastic materials. Traditional numerical solution methods exhibit various undesired properties due to the non-locality of the fractional differential operators, in particular regarding the high computational complexity and the high memory requirements. The infinite state representation is an approach on which one can base numerical methods that overcome these obstacles. Such algorithms contain a number of parameters that influence the final result in nontrivial ways. Based on numerical experiments, we initiate a study leading to good choices of these parameters.
Importance sampling (IS) is often used to perform off-policy policy evaluation but is prone to several issues, especially when the behavior policy is unknown and must be estimated from data. Significant differences between the target and behavior policies can result in uncertain value estimates due to, for example, high variance and non-evaluated actions. If the behavior policy is estimated using black-box models, it can be hard to diagnose potential problems and to determine for which inputs the policies differ in their suggested actions and resulting values. To address this, we propose estimating the behavior policy for IS using prototype learning. We apply this approach in the evaluation of policies for sepsis treatment, demonstrating how the prototypes give a condensed summary of differences between the target and behavior policies while retaining an accuracy comparable to baseline estimators. We also describe estimated values in terms of the prototypes to better understand which parts of the target policies have the most impact on the estimates. Using a simulator, we study the bias resulting from restricting models to use prototypes.
In Bayesian analysis, the selection of a prior distribution is typically done by considering each parameter in the model. While this can be convenient, in many scenarios it may be desirable to place a prior on a summary measure of the model instead. In this work, we propose a prior on the model fit, as measured by a Bayesian coefficient of determination (R2), which then induces a prior on the individual parameters. We achieve this by placing a beta prior on R2 and then deriving the induced prior on the global variance parameter for generalized linear mixed models. We derive closed-form expressions in many scenarios and present several approximation strategies when an analytic form is not possible and/or to allow for easier computation. In these situations, we suggest to approximate the prior by using a generalized beta prime distribution that matches it closely. This approach is quite flexible and can be easily implemented in standard Bayesian software. Lastly, we demonstrate the performance of the method on simulated data where it particularly shines in high-dimensional examples as well as real-world data which shows its ability to model spatial correlation in the random effects.
When and why can a neural network be successfully trained? This article provides an overview of optimization algorithms and theory for training neural networks. First, we discuss the issue of gradient explosion/vanishing and the more general issue of undesirable spectrum, and then discuss practical solutions including careful initialization and normalization methods. Second, we review generic optimization methods used in training neural networks, such as SGD, adaptive gradient methods and distributed methods, and theoretical results for these algorithms. Third, we review existing research on the global issues of neural network training, including results on bad local minima, mode connectivity, lottery ticket hypothesis and infinite-width analysis.
In two-phase image segmentation, convex relaxation has allowed global minimisers to be computed for a variety of data fitting terms. Many efficient approaches exist to compute a solution quickly. However, we consider whether the nature of the data fitting in this formulation allows for reasonable assumptions to be made about the solution that can improve the computational performance further. In particular, we employ a well known dual formulation of this problem and solve the corresponding equations in a restricted domain. We present experimental results that explore the dependence of the solution on this restriction and quantify imrovements in the computational performance. This approach can be extended to analogous methods simply and could provide an efficient alternative for problems of this type.
In this work, we consider the distributed optimization of non-smooth convex functions using a network of computing units. We investigate this problem under two regularity assumptions: (1) the Lipschitz continuity of the global objective function, and (2) the Lipschitz continuity of local individual functions. Under the local regularity assumption, we provide the first optimal first-order decentralized algorithm called multi-step primal-dual (MSPD) and its corresponding optimal convergence rate. A notable aspect of this result is that, for non-smooth functions, while the dominant term of the error is in $O(1/\sqrt{t})$, the structure of the communication network only impacts a second-order term in $O(1/t)$, where $t$ is time. In other words, the error due to limits in communication resources decreases at a fast rate even in the case of non-strongly-convex objective functions. Under the global regularity assumption, we provide a simple yet efficient algorithm called distributed randomized smoothing (DRS) based on a local smoothing of the objective function, and show that DRS is within a $d^{1/4}$ multiplicative factor of the optimal convergence rate, where $d$ is the underlying dimension.