亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Transfer-based attack adopts the adversarial examples generated on the surrogate model to attack various models, making it applicable in the physical world and attracting increasing interest. Recently, various adversarial attacks have emerged to boost adversarial transferability from different perspectives. In this work, inspired by the observation that flat local minima are correlated with good generalization, we assume and empirically validate that adversarial examples at a flat local region tend to have good transferability by introducing a penalized gradient norm to the original loss function. Since directly optimizing the gradient regularization norm is computationally expensive and intractable for generating adversarial examples, we propose an approximation optimization method to simplify the gradient update of the objective function. Specifically, we randomly sample an example and adopt a first-order procedure to approximate the curvature of Hessian/vector product, which makes computing more efficient by interpolating two neighboring gradients. Meanwhile, in order to obtain a more stable gradient direction, we randomly sample multiple examples and average the gradients of these examples to reduce the variance due to random sampling during the iterative process. Extensive experimental results on the ImageNet-compatible dataset show that the proposed method can generate adversarial examples at flat local regions, and significantly improve the adversarial transferability on either normally trained models or adversarially trained models than the state-of-the-art attacks. Our codes are available at: //github.com/Trustworthy-AI-Group/PGN.

相關內容

Diffusion models have gained traction as powerful algorithms for synthesizing high-quality images. Central to these algorithms is the diffusion process, which maps data to noise according to equations inspired by thermodynamics and can significantly impact performance. A widely held assumption is that the ELBO objective of a diffusion model is invariant to the noise process (Kingma et al.,2021). In this work, we dispel this assumption -- we propose multivariate learned adaptive noise (MuLAN), a learned diffusion process that applies Gaussian noise at different rates across an image. Our method consists of three components -- a multivariate noise schedule, instance-conditional diffusion, and auxiliary variables -- which ensure that the learning objective is no longer invariant to the choice of the noise schedule as in previous works. Our work is grounded in Bayesian inference and casts the learned diffusion process as an approximate variational posterior that yields a tighter lower bound on marginal likelihood. Empirically, MuLAN sets a new state-of-the-art in density estimation on CIFAR-10 and ImageNet compared to classical diffusion. Code is available at //github.com/s-sahoo/MuLAN

We propose Diffusion Noise Optimization (DNO), a new method that effectively leverages existing motion diffusion models as motion priors for a wide range of motion-related tasks. Instead of training a task-specific diffusion model for each new task, DNO operates by optimizing the diffusion latent noise of an existing pre-trained text-to-motion model. Given the corresponding latent noise of a human motion, it propagates the gradient from the target criteria defined on the motion space through the whole denoising process to update the diffusion latent noise. As a result, DNO supports any use cases where criteria can be defined as a function of motion. In particular, we show that, for motion editing and control, DNO outperforms existing methods in both achieving the objective and preserving the motion content. DNO accommodates a diverse range of editing modes, including changing trajectory, pose, joint locations, or avoiding newly added obstacles. In addition, DNO is effective in motion denoising and completion, producing smooth and realistic motion from noisy and partial inputs. DNO achieves these results at inference time without the need for model retraining, offering great versatility for any defined reward or loss function on the motion representation.

Bayesian Neural Network (BNN) offers a more principled, robust, and interpretable framework for analyzing high-dimensional data. They address the typical challenges associated with conventional deep learning methods, such as data insatiability, ad-hoc nature, and susceptibility to overfitting. However, their implementation typically relies on Markov chain Monte Carlo (MCMC) methods that are characterized by their computational intensity and inefficiency in a high-dimensional space. To address this issue, we propose a novel Calibration-Emulation-Sampling (CES) strategy to significantly enhance the computational efficiency of BNN. In this CES framework, during the initial calibration stage, we collect a small set of samples from the parameter space. These samples serve as training data for the emulator. Here, we employ a Deep Neural Network (DNN) emulator to approximate the forward mapping, i.e., the process that input data go through various layers to generate predictions. The trained emulator is then used for sampling from the posterior distribution at substantially higher speed compared to the original BNN. Using simulated and real data, we demonstrate that our proposed method improves computational efficiency of BNN, while maintaining similar performance in terms of prediction accuracy and uncertainty quantification.

We propose a framework for applying reinforcement learning to contextual two-stage stochastic optimization and apply this framework to the problem of energy market bidding of an off-shore wind farm. Reinforcement learning could potentially be used to learn close to optimal solutions for first stage variables of a two-stage stochastic program under different contexts. Under the proposed framework, these solutions would be learned without having to solve the full two-stage stochastic program. We present initial results of training using the DDPG algorithm and present intended future steps to improve performance.

Re-training a deep learning model each time a single data point receives a new label is impractical due to the inherent complexity of the training process. Consequently, existing active learning (AL) algorithms tend to adopt a batch-based approach where, during each AL iteration, a set of data points is collectively chosen for annotation. However, this strategy frequently leads to redundant sampling, ultimately eroding the efficacy of the labeling procedure. In this paper, we introduce a new AL algorithm that harnesses the power of a Gaussian process surrogate in conjunction with the neural network principal learner. Our proposed model adeptly updates the surrogate learner for every new data instance, enabling it to emulate and capitalize on the continuous learning dynamics of the neural network without necessitating a complete retraining of the principal model for each individual label. Experiments on four benchmark datasets demonstrate that this approach yields significant enhancements, either rivaling or aligning with the performance of state-of-the-art techniques.

Diffusion Probabilistic Models stand as a critical tool in generative modelling, enabling the generation of complex data distributions. This family of generative models yields record-breaking performance in tasks such as image synthesis, video generation, and molecule design. Despite their capabilities, their efficiency, especially in the reverse process, remains a challenge due to slow convergence rates and high computational costs. In this paper, we introduce an approach that leverages continuous dynamical systems to design a novel denoising network for diffusion models that is more parameter-efficient, exhibits faster convergence, and demonstrates increased noise robustness. Experimenting with Denoising Diffusion Probabilistic Models (DDPMs), our framework operates with approximately a quarter of the parameters, and $\sim$ 30\% of the Floating Point Operations (FLOPs) compared to standard U-Nets in DDPMs. Furthermore, our model is notably faster in inference than the baseline when measured in fair and equal conditions. We also provide a mathematical intuition as to why our proposed reverse process is faster as well as a mathematical discussion of the empirical tradeoffs in the denoising downstream task. Finally, we argue that our method is compatible with existing performance enhancement techniques, enabling further improvements in efficiency, quality, and speed.

Graph Neural Networks (GNNs) demonstrate their significance by effectively modeling complex interrelationships within graph-structured data. To enhance the credibility and robustness of GNNs, it becomes exceptionally crucial to bolster their ability to capture causal relationships. However, despite recent advancements that have indeed strengthened GNNs from a causal learning perspective, conducting an in-depth analysis specifically targeting the causal modeling prowess of GNNs remains an unresolved issue. In order to comprehensively analyze various GNN models from a causal learning perspective, we constructed an artificially synthesized dataset with known and controllable causal relationships between data and labels. The rationality of the generated data is further ensured through theoretical foundations. Drawing insights from analyses conducted using our dataset, we introduce a lightweight and highly adaptable GNN module designed to strengthen GNNs' causal learning capabilities across a diverse range of tasks. Through a series of experiments conducted on both synthetic datasets and other real-world datasets, we empirically validate the effectiveness of the proposed module.

We advocate the use of implicit fields for learning generative models of shapes and introduce an implicit field decoder for shape generation, aimed at improving the visual quality of the generated shapes. An implicit field assigns a value to each point in 3D space, so that a shape can be extracted as an iso-surface. Our implicit field decoder is trained to perform this assignment by means of a binary classifier. Specifically, it takes a point coordinate, along with a feature vector encoding a shape, and outputs a value which indicates whether the point is outside the shape or not. By replacing conventional decoders by our decoder for representation learning and generative modeling of shapes, we demonstrate superior results for tasks such as shape autoencoding, generation, interpolation, and single-view 3D reconstruction, particularly in terms of visual quality.

We investigate a lattice-structured LSTM model for Chinese NER, which encodes a sequence of input characters as well as all potential words that match a lexicon. Compared with character-based methods, our model explicitly leverages word and word sequence information. Compared with word-based methods, lattice LSTM does not suffer from segmentation errors. Gated recurrent cells allow our model to choose the most relevant characters and words from a sentence for better NER results. Experiments on various datasets show that lattice LSTM outperforms both word-based and character-based LSTM baselines, achieving the best results.

We propose a new method for event extraction (EE) task based on an imitation learning framework, specifically, inverse reinforcement learning (IRL) via generative adversarial network (GAN). The GAN estimates proper rewards according to the difference between the actions committed by the expert (or ground truth) and the agent among complicated states in the environment. EE task benefits from these dynamic rewards because instances and labels yield to various extents of difficulty and the gains are expected to be diverse -- e.g., an ambiguous but correctly detected trigger or argument should receive high gains -- while the traditional RL models usually neglect such differences and pay equal attention on all instances. Moreover, our experiments also demonstrate that the proposed framework outperforms state-of-the-art methods, without explicit feature engineering.

北京阿比特科技有限公司