This article considers the problem of modeling a class of nonstationary count time series using multiple change-points generalized integer-valued autoregressive (MCP-GINAR) processes. The minimum description length principle (MDL) is applied to study the statistical inference for the MCP-GINAR model, and the consistency results of the MDL model selection procedure are established respectively under the condition of known and unknown number of change-points. To find the ``best" combination of the number of change-points, the locations of change-points, the order of each segment and its parameters, a genetic algorithm with simulated annealing is implemented to solve this difficult optimization problem. In particular, the simulated annealing process makes up for the precocious problem of the traditional genetic algorithm. Numerical results from simulation experiments and three examples of real data analyses show that the procedure has excellent empirical properties.
The class of doubly-robust (DR) functionals studied by Rotnitzky et al. (2021) is of central importance in economics and biostatistics. It strictly includes both (i) the class of mean-square continuous functionals that can be written as an expectation of an affine functional of a conditional expectation studied by Chernozhukov et al. (2022b) and (ii) the class of functionals studied by Robins et al. (2008). The present state-of-the-art estimators for DR functionals $\psi$ are double-machine-learning (DML) estimators (Chernozhukov et al., 2018). A DML estimator $\widehat{\psi}_{1}$ of $\psi$ depends on estimates $\widehat{p} (x)$ and $\widehat{b} (x)$ of a pair of nuisance functions $p(x)$ and $b(x)$, and is said to satisfy "rate double-robustness" if the Cauchy--Schwarz upper bound of its bias is $o (n^{- 1/2})$. Were it achievable, our scientific goal would have been to construct valid, assumption-lean (i.e. no complexity-reducing assumptions on $b$ or $p$) tests of the validity of a nominal $(1 - \alpha)$ Wald confidence interval (CI) centered at $\widehat{\psi}_{1}$. But this would require a test of the bias to be $o (n^{-1/2})$, which can be shown not to exist. We therefore adopt the less ambitious goal of falsifying, when possible, an analyst's justification for her claim that the reported $(1 - \alpha)$ Wald CI is valid. In many instances, an analyst justifies her claim by imposing complexity-reducing assumptions on $b$ and $p$ to ensure "rate double-robustness". Here we exhibit valid, assumption-lean tests of $H_{0}$: "rate double-robustness holds", with non-trivial power against certain alternatives. If $H_{0}$ is rejected, we will have falsified her justification. However, no assumption-lean test of $H_{0}$, including ours, can be a consistent test. Thus, the failure of our test to reject is not meaningful evidence in favor of $H_{0}$.
The Koopman operator provides a linear perspective on non-linear dynamics by focusing on the evolution of observables in an invariant subspace. Observables of interest are typically linearly reconstructed from the Koopman eigenfunctions. Despite the broad use of Koopman operators over the past few years, there exist some misconceptions about the applicability of Koopman operators to dynamical systems with more than one fixed point. In this work, an explanation is provided for the mechanism of lifting for the Koopman operator of nonlinear systems with multiple attractors. Considering the example of the Duffing oscillator, we show that by exploiting the inherent symmetry between the basins of attraction, a linear reconstruction with three degrees of freedom in the Koopman observable space is sufficient to globally linearize the system.
We study various aspects of the first-order transduction quasi-order, which provides a way of measuring the relative complexity of classes of structures based on whether one can encode the other using a formula of first-order (FO) logic. In contrast with the conjectured simplicity of the transduction quasi-order for monadic second-order logic, the FO-transduction quasi-order is very complex; in particular, we prove that the quotient partial order is not a lattice, although it is a bounded distributive join-semilattice, as is the subposet of additive classes. Many standard properties from structural graph theory and model theory naturally appear in this quasi-order. For example, we characterize transductions of paths, cubic graphs, and cubic trees in terms of bandwidth, bounded degree, and treewidth. We establish that the classes of all graphs with pathwidth at most~$k$, for $k\geq 1$, form a strict hierarchy in the FO-transduction quasi-order and leave open whether same is true for treewidth. This leads to considering whether properties admit maximum or minimum classes in this quasi-order. We prove that many properties do not admit a maximum class, and that star forests are the minimum class that is not a transduction of a class with bounded degree, which can be seen as an instance of transduction duality. We close with a notion of dense analogues of sparse classes, and discuss several related conjectures. As a ubiquitous tool in our results, we prove a normal form for FO-transductions that manifests the locality of FO logic. This is among several other technical results about FO-transductions which we anticipate being broadly useful.
Block majorization-minimization (BMM) is a simple iterative algorithm for nonconvex constrained optimization that sequentially minimizes majorizing surrogates of the objective function in each block coordinate while the other coordinates are held fixed. BMM entails a large class of optimization algorithms such as block coordinate descent and its proximal-point variant, expectation-minimization, and block projected gradient descent. We establish that for general constrained nonconvex optimization, BMM with strongly convex surrogates can produce an $\epsilon$-stationary point within $O(\epsilon^{-2}(\log \epsilon^{-1})^{2})$ iterations and asymptotically converges to the set of stationary points. Furthermore, we propose a trust-region variant of BMM that can handle surrogates that are only convex and still obtain the same iteration complexity and asymptotic stationarity. These results hold robustly even when the convex sub-problems are inexactly solved as long as the optimality gaps are summable. As an application, we show that a regularized version of the celebrated multiplicative update algorithm for nonnegative matrix factorization by Lee and Seung has iteration complexity of $O(\epsilon^{-2}(\log \epsilon^{-1})^{2})$. The same result holds for a wide class of regularized nonnegative tensor decomposition algorithms as well as the classical block projected gradient descent algorithm. These theoretical results are validated through various numerical experiments.
We review common situations in Bayesian latent variable models where the prior distribution that a researcher specifies differs from the prior distribution used during estimation. These situations can arise from the positive definite requirement on correlation matrices, from sign indeterminacy of factor loadings, and from order constraints on threshold parameters. The issue is especially problematic for reproducibility and for model checks that involve prior distributions, including prior predictive assessment and Bayes factors. In these cases, one might be assessing the wrong model, casting doubt on the relevance of the results. The most straightforward solution to the issue sometimes involves use of informative prior distributions. We explore other solutions and make recommendations for practice.
We present new Dirichlet-Neumann and Neumann-Dirichlet algorithms with a time domain decomposition applied to unconstrained parabolic optimal control problems. After a spatial semi-discretization, we use the Lagrange multiplier approach to derive a coupled forward-backward optimality system, which can then be solved using a time domain decomposition. Due to the forward-backward structure of the optimality system, three variants can be found for the Dirichlet-Neumann and Neumann-Dirichlet algorithms. We analyze their convergence behavior and determine the optimal relaxation parameter for each algorithm. Our analysis reveals that the most natural algorithms are actually only good smoothers, and there are better choices which lead to efficient solvers. We illustrate our analysis with numerical experiments.
This article investigates the weak approximation towards the invariant measure of semi-linear stochastic differential equations (SDEs) under non-globally Lipschitz coefficients. For this purpose, we propose a linear-theta-projected Euler (LTPE) scheme, which also admits an invariant measure, to handle the potential influence of the linear stiffness. Under certain assumptions, both the SDE and the corresponding LTPE method are shown to converge exponentially to the underlying invariant measures, respectively. Moreover, with time-independent regularity estimates for the corresponding Kolmogorov equation, the weak error between the numerical invariant measure and the original one can be guaranteed with an order one. Numerical experiments are provided to verify our theoretical findings.
Accurately estimating parameters in complex nonlinear systems is crucial across scientific and engineering fields. We present a novel approach for parameter estimation using a neural network with the Huber loss function. This method taps into deep learning's abilities to uncover parameters governing intricate behaviors in nonlinear equations. We validate our approach using synthetic data and predefined functions that model system dynamics. By training the neural network with noisy time series data, it fine-tunes the Huber loss function to converge to accurate parameters. We apply our method to damped oscillators, Van der Pol oscillators, Lotka-Volterra systems, and Lorenz systems under multiplicative noise. The trained neural network accurately estimates parameters, evident from closely matching latent dynamics. Comparing true and estimated trajectories visually reinforces our method's precision and robustness. Our study underscores the Huber loss-guided neural network as a versatile tool for parameter estimation, effectively uncovering complex relationships in nonlinear systems. The method navigates noise and uncertainty adeptly, showcasing its adaptability to real-world challenges.
The choice to participate in a data-driven service, often made on the basis of quality of that service, influences the ability of the service to learn and improve. We study the participation and retraining dynamics that arise when both the learners and sub-populations of users are \emph{risk-reducing}, which cover a broad class of updates including gradient descent, multiplicative weights, etc. Suppose, for example, that individuals choose to spend their time amongst social media platforms proportionally to how well each platform works for them. Each platform also gathers data about its active users, which it uses to update parameters with a gradient step. For this example and for our general class of dynamics, we show that the only asymptotically stable equilibria are segmented, with sub-populations allocated to a single learner. Under mild assumptions, the utilitarian social optimum is a stable equilibrium. In contrast to previous work, which shows that repeated risk minimization can result in representation disparity and high overall loss for a single learner \citep{hashimoto2018fairness,miller2021outside}, we find that repeated myopic updates with multiple learners lead to better outcomes. We illustrate the phenomena via a simulated example initialized from real data.
Navigating dynamic environments requires the robot to generate collision-free trajectories and actively avoid moving obstacles. Most previous works designed path planning algorithms based on one single map representation, such as the geometric, occupancy, or ESDF map. Although they have shown success in static environments, due to the limitation of map representation, those methods cannot reliably handle static and dynamic obstacles simultaneously. To address the problem, this paper proposes a gradient-based B-spline trajectory optimization algorithm utilizing the robot's onboard vision. The depth vision enables the robot to track and represent dynamic objects geometrically based on the voxel map. The proposed optimization first adopts the circle-based guide-point algorithm to approximate the costs and gradients for avoiding static obstacles. Then, with the vision-detected moving objects, our receding-horizon distance field is simultaneously used to prevent dynamic collisions. Finally, the iterative re-guide strategy is applied to generate the collision-free trajectory. The simulation and physical experiments prove that our method can run in real-time to navigate dynamic environments safely.