亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Recently video generation has achieved substantial progress with realistic results. Nevertheless, existing AI-generated videos are usually very short clips ("shot-level") depicting a single scene. To deliver a coherent long video ("story-level"), it is desirable to have creative transition and prediction effects across different clips. This paper presents a short-to-long video diffusion model, SEINE, that focuses on generative transition and prediction. The goal is to generate high-quality long videos with smooth and creative transitions between scenes and varying lengths of shot-level videos. Specifically, we propose a random-mask video diffusion model to automatically generate transitions based on textual descriptions. By providing the images of different scenes as inputs, combined with text-based control, our model generates transition videos that ensure coherence and visual quality. Furthermore, the model can be readily extended to various tasks such as image-to-video animation and autoregressive video prediction. To conduct a comprehensive evaluation of this new generative task, we propose three assessing criteria for smooth and creative transition: temporal consistency, semantic similarity, and video-text semantic alignment. Extensive experiments validate the effectiveness of our approach over existing methods for generative transition and prediction, enabling the creation of story-level long videos. Project page: //vchitect.github.io/SEINE-project/ .

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · MoDELS · Extensibility · 生成模型 · 輸入空間 ·
2023 年 12 月 17 日

With the advancement of generative models, the assessment of generated images becomes more and more important. Previous methods measure distances between features of reference and generated images from trained vision models. In this paper, we conduct an extensive investigation into the relationship between the representation space and input space around generated images. We first propose two measures related to the presence of unnatural elements within images: complexity, which indicates how non-linear the representation space is, and vulnerability, which is related to how easily the extracted feature changes by adversarial input changes. Based on these, we introduce a new metric to evaluating image-generative models called anomaly score (AS). Moreover, we propose AS-i (anomaly score for individual images) that can effectively evaluate generated images individually. Experimental results demonstrate the validity of the proposed approach.

Recent advances in contrastive language-image pretraining (CLIP) have demonstrated strong capabilities in zero-shot classification by aligning visual representations with target text embeddings in an image level. However, in dense prediction tasks, CLIP often struggles to localize visual features within an image and fails to give accurate pixel-level predictions, which prevents it from functioning as a generalized visual foundation model. In this work, we aim to enhance CLIP's potential for semantic segmentation with minimal modifications to its pretrained models. By rethinking self-attention, we surprisingly find that CLIP can adapt to dense prediction tasks by simply introducing a novel Correlative Self-Attention (CSA) mechanism. Specifically, we replace the traditional self-attention block of CLIP vision encoder's last layer by our CSA module and reuse its pretrained projection matrices of query, key, and value, leading to a training-free adaptation approach for CLIP's zero-shot semantic segmentation. Extensive experiments show the advantage of CSA: we obtain a 38.2% average zero-shot mIoU across eight semantic segmentation benchmarks highlighted in this paper, significantly outperforming the existing SoTA's 33.9% and the vanilla CLIP's 14.1%.

Due to the omnipresence of Neural Radiance Fields (NeRFs), the interest towards editable implicit 3D representations has surged over the last years. However, editing implicit or hybrid representations as used for NeRFs is difficult due to the entanglement of appearance and geometry encoded in the model parameters. Despite these challenges, recent research has shown first promising steps towards photorealistic and non-photorealistic appearance edits. The main open issues of related work include limited interactivity, a lack of support for local edits and large memory requirements, rendering them less useful in practice. We address these limitations with LAENeRF, a unified framework for photorealistic and non-photorealistic appearance editing of NeRFs. To tackle local editing, we leverage a voxel grid as starting point for region selection. We learn a mapping from expected ray terminations to final output color, which can optionally be supervised by a style loss, resulting in a framework which can perform photorealistic and non-photorealistic appearance editing of selected regions. Relying on a single point per ray for our mapping, we limit memory requirements and enable fast optimization. To guarantee interactivity, we compose the output color using a set of learned, modifiable base colors, composed with additive layer mixing. Compared to concurrent work, LAENeRF enables recoloring and stylization while keeping processing time low. Furthermore, we demonstrate that our approach surpasses baseline methods both quantitatively and qualitatively.

Neural implicit scene representations have recently shown encouraging results in dense visual SLAM. However, existing methods produce low-quality scene reconstruction and low-accuracy localization performance when scaling up to large indoor scenes and long sequences. These limitations are mainly due to their single, global radiance field with finite capacity, which does not adapt to large scenarios. Their end-to-end pose networks are also not robust enough with the growth of cumulative errors in large scenes. To this end, we present PLGSLAM, a neural visual SLAM system which performs high-fidelity surface reconstruction and robust camera tracking in real time. To handle large-scale indoor scenes, PLGSLAM proposes a progressive scene representation method which dynamically allocates new local scene representation trained with frames within a local sliding window. This allows us to scale up to larger indoor scenes and improves robustness (even under pose drifts). In local scene representation, PLGSLAM utilizes tri-planes for local high-frequency features. We also incorporate multi-layer perceptron (MLP) networks for the low-frequency feature, smoothness, and scene completion in unobserved areas. Moreover, we propose local-to-global bundle adjustment method with a global keyframe database to address the increased pose drifts on long sequences. Experimental results demonstrate that PLGSLAM achieves state-of-the-art scene reconstruction results and tracking performance across various datasets and scenarios (both in small and large-scale indoor environments). The code will be open-sourced upon paper acceptance.

Video-grounded Dialogue (VGD) aims to answer questions regarding a given multi-modal input comprising video, audio, and dialogue history. Although there have been numerous efforts in developing VGD systems to improve the quality of their responses, existing systems are competent only to incorporate the information in the video and text and tend to struggle in extracting the necessary information from the audio when generating appropriate responses to the question. The VGD system seems to be deaf, and thus, we coin this symptom of current systems' ignoring audio data as a deaf response. To overcome the deaf response problem, Hearing Enhanced Audio Response (HEAR) framework is proposed to perform sensible listening by selectively attending to audio whenever the question requires it. The HEAR framework enhances the accuracy and audibility of VGD systems in a model-agnostic manner. HEAR is validated on VGD datasets (i.e., AVSD@DSTC7 and AVSD@DSTC8) and shows effectiveness with various VGD systems.

In speaker verification, ECAPA-TDNN has shown remarkable improvement by utilizing one-dimensional(1D) Res2Net block and squeeze-and-excitation(SE) module, along with multi-layer feature aggregation (MFA). Meanwhile, in vision tasks, ConvNet structures have been modernized by referring to Transformer, resulting in improved performance. In this paper, we present an improved block design for TDNN in speaker verification. Inspired by recent ConvNet structures, we replace the SE-Res2Net block in ECAPA-TDNN with a novel 1D two-step multi-scale ConvNeXt block, which we call TS-ConvNeXt. The TS-ConvNeXt block is constructed using two separated sub-modules: a temporal multi-scale convolution (MSC) and a frame-wise feed-forward network (FFN). This two-step design allows for flexible capturing of inter-frame and intra-frame contexts. Additionally, we introduce global response normalization (GRN) for the FFN modules to enable more selective feature propagation, similar to the SE module in ECAPA-TDNN. Experimental results demonstrate that NeXt-TDNN, with a modernized backbone block, significantly improved performance in speaker verification tasks while reducing parameter size and inference time. We have released our code for future studies.

In this paper, we introduce PI3D, a novel and efficient framework that utilizes the pre-trained text-to-image diffusion models to generate high-quality 3D shapes in minutes. On the one hand, it fine-tunes a pre-trained 2D diffusion model into a 3D diffusion model, enabling both 3D generative capabilities and generalization derived from the 2D model. On the other, it utilizes score distillation sampling of 2D diffusion models to quickly improve the quality of the sampled 3D shapes. PI3D enables the migration of knowledge from image to triplane generation by treating it as a set of pseudo-images. We adapt the modules in the pre-training model to enable hybrid training using pseudo and real images, which has proved to be a well-established strategy for improving generalizability. The efficiency of PI3D is highlighted by its ability to sample diverse 3D models in seconds and refine them in minutes. The experimental results confirm the advantages of PI3D over existing methods based on either 3D diffusion models or lifting 2D diffusion models in terms of fast generation of 3D consistent and high-quality models. The proposed PI3D stands as a promising advancement in the field of text-to-3D generation, and we hope it will inspire more research into 3D generation leveraging the knowledge in both 2D and 3D data.

Recently audio-visual speech recognition (AVSR), which better leverages video modality as additional information to extend automatic speech recognition (ASR), has shown promising results in complex acoustic environments. However, there is still substantial space to improve as complex computation of visual modules and ineffective fusion of audio-visual modalities. To eliminate these drawbacks, we propose a down-up sampling-based AVSR model (Hourglass-AVSR) to enjoy high efficiency and performance, whose time length is scaled during the intermediate processing, resembling an hourglass. Firstly, we propose a context and residual aware video upsampling approach to improve the recognition performance, which utilizes contextual information from visual representations and captures residual information between adjacent video frames. Secondly, we introduce a visual-audio alignment approach during the upsampling by explicitly incorporating boundary constraint loss. Besides, we propose a cross-layer attention fusion to capture the modality dependencies within each visual encoder layer. Experiments conducted on the MISP-AVSR dataset reveal that our proposed Hourglass-AVSR model outperforms ASR model by 12.9% and 20.8% relative concatenated minimum permutation character error rate (cpCER) reduction on far-field and middle-field test sets, respectively. Moreover, compared to other state-of-the-art AVSR models, our model exhibits the highest improvement in cpCER for the visual module. Furthermore, on the benefit of our down-up sampling approach, Hourglass-AVSR model reduces 54.2% overall computation costs with minor performance degradation.

We investigate the challenges of style transfer in multi-modal visual narratives. Among static visual narratives such as comics and manga, there are distinct visual styles in terms of presentation. They include style features across multiple dimensions, such as panel layout, size, shape, and color. They include both visual and text media elements. The layout of both text and media elements is also significant in terms of narrative communication. The sequential transitions between panels are where readers make inferences about the narrative world. These feature differences provide an interesting challenge for style transfer in which there are distinctions between the processing of features for each modality. We introduce the notion of comprehension-preserving style transfer (CPST) in such multi-modal domains. CPST requires not only traditional metrics of style transfer but also metrics of narrative comprehension. To spur further research in this area, we present an annotated dataset of comics and manga and an initial set of algorithms that utilize separate style transfer modules for the visual, textual, and layout parameters. To test whether the style transfer preserves narrative semantics, we evaluate this algorithm through visual story cloze tests inspired by work in computational cognition of narrative systems. Understanding the connection between style and narrative semantics provides insight for applications ranging from informational brochure designs to data storytelling.

Multi-agent influence diagrams (MAIDs) are a popular form of graphical model that, for certain classes of games, have been shown to offer key complexity and explainability advantages over traditional extensive form game (EFG) representations. In this paper, we extend previous work on MAIDs by introducing the concept of a MAID subgame, as well as subgame perfect and trembling hand perfect equilibrium refinements. We then prove several equivalence results between MAIDs and EFGs. Finally, we describe an open source implementation for reasoning about MAIDs and computing their equilibria.

北京阿比特科技有限公司