亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Deep-learning models for 3D point cloud semantic segmentation exhibit limited generalization capabilities when trained and tested on data captured with different sensors or in varying environments due to domain shift. Domain adaptation methods can be employed to mitigate this domain shift, for instance, by simulating sensor noise, developing domain-agnostic generators, or training point cloud completion networks. Often, these methods are tailored for range view maps or necessitate multi-modal input. In contrast, domain adaptation in the image domain can be executed through sample mixing, which emphasizes input data manipulation rather than employing distinct adaptation modules. In this study, we introduce compositional semantic mixing for point cloud domain adaptation, representing the first unsupervised domain adaptation technique for point cloud segmentation based on semantic and geometric sample mixing. We present a two-branch symmetric network architecture capable of concurrently processing point clouds from a source domain (e.g. synthetic) and point clouds from a target domain (e.g. real-world). Each branch operates within one domain by integrating selected data fragments from the other domain and utilizing semantic information derived from source labels and target (pseudo) labels. Additionally, our method can leverage a limited number of human point-level annotations (semi-supervised) to further enhance performance. We assess our approach in both synthetic-to-real and real-to-real scenarios using LiDAR datasets and demonstrate that it significantly outperforms state-of-the-art methods in both unsupervised and semi-supervised settings.

相關內容

根據激光測量原理得到的點云,包括三維坐標(XYZ)和激光反射強度(Intensity)。 根據攝影測量原理得到的點云,包括三維坐標(XYZ)和顏色信息(RGB)。 結合激光測量和攝影測量原理得到點云,包括三維坐標(XYZ)、激光反射強度(Intensity)和顏色信息(RGB)。 在獲取物體表面每個采樣點的空間坐標后,得到的是一個點的集合,稱之為“點云”(Point Cloud)

Deep learning-based fault diagnosis (FD) approaches require a large amount of training data, which are difficult to obtain since they are located across different entities. Federated learning (FL) enables multiple clients to collaboratively train a shared model with data privacy guaranteed. However, the domain discrepancy and data scarcity problems among clients deteriorate the performance of the global FL model. To tackle these issues, we propose a novel framework called representation encoding-based federated meta-learning (REFML) for few-shot FD. First, a novel training strategy based on representation encoding and meta-learning is developed. It harnesses the inherent heterogeneity among training clients, effectively transforming it into an advantage for out-of-distribution generalization on unseen working conditions or equipment types. Additionally, an adaptive interpolation method that calculates the optimal combination of local and global models as the initialization of local training is proposed. This helps to further utilize local information to mitigate the negative effects of domain discrepancy. As a result, high diagnostic accuracy can be achieved on unseen working conditions or equipment types with limited training data. Compared with the state-of-the-art methods, such as FedProx, the proposed REFML framework achieves an increase in accuracy by 2.17%-6.50% when tested on unseen working conditions of the same equipment type and 13.44%-18.33% when tested on totally unseen equipment types, respectively.

Large Language models (LLMs) possess the capability to engage In-context Learning (ICL) by leveraging a few demonstrations pertaining to a new downstream task as conditions. However, this particular learning paradigm suffers from high instability stemming from substantial variances induced by factors such as the input distribution of selected examples, their ordering, and prompt formats. In this work, we demonstrate that even when all these factors are held constant, the random selection of examples still results in high variance. Consequently, we aim to explore the informative ability of data examples by quantifying the Information Gain (IG) obtained in prediction after observing a given example candidate. Then we propose to sample those with maximum IG. Additionally, we identify the presence of template bias, which can lead to unfair evaluations of IG during the sampling process. To mitigate this bias, we introduce Calibration Before Sampling strategy. The experimental results illustrate that our proposed method can yield an average relative improvement of 14.3% across six classification tasks using three LLMs.

Most Reinforcement Learning (RL) methods are traditionally studied in an active learning setting, where agents directly interact with their environments, observe action outcomes, and learn through trial and error. However, allowing partially trained agents to interact with real physical systems poses significant challenges, including high costs, safety risks, and the need for constant supervision. Offline RL addresses these cost and safety concerns by leveraging existing datasets and reducing the need for resource-intensive real-time interactions. Nevertheless, a substantial challenge lies in the demand for these datasets to be meticulously annotated with rewards. In this paper, we introduce Optimal Transport Reward (OTR) labelling, an innovative algorithm designed to assign rewards to offline trajectories, using a small number of high-quality expert demonstrations. The core principle of OTR involves employing Optimal Transport (OT) to calculate an optimal alignment between an unlabeled trajectory from the dataset and an expert demonstration. This alignment yields a similarity measure that is effectively interpreted as a reward signal. An offline RL algorithm can then utilize these reward signals to learn a policy. This approach circumvents the need for handcrafted rewards, unlocking the potential to harness vast datasets for policy learning. Leveraging the SurRoL simulation platform tailored for surgical robot learning, we generate datasets and employ them to train policies using the OTR algorithm. By demonstrating the efficacy of OTR in a different domain, we emphasize its versatility and its potential to expedite RL deployment across a wide range of fields.

Distributed ensemble learning (DEL) involves training multiple models at distributed learners, and then combining their predictions to improve performance. Existing related studies focus on DEL algorithm design and optimization but ignore the important issue of incentives, without which self-interested learners may be unwilling to participate in DEL. We aim to fill this gap by presenting a first study on the incentive mechanism design for DEL. Our proposed mechanism specifies both the amount of training data and reward for learners with heterogeneous computation and communication costs. One design challenge is to have an accurate understanding regarding how learners' diversity (in terms of training data) affects the ensemble accuracy. To this end, we decompose the ensemble accuracy into a diversity-precision tradeoff to guide the mechanism design. Another challenge is that the mechanism design involves solving a mixed-integer program with a large search space. To this end, we propose an alternating algorithm that iteratively updates each learner's training data size and reward. We prove that under mild conditions, the algorithm converges. Numerical results using MNIST dataset show an interesting result: our proposed mechanism may prefer a lower level of learner diversity to achieve a higher ensemble accuracy.

To leverage data for the sufficient training of machine learning (ML) models from multiple parties in a confidentiality-preserving way, various collaborative distributed ML (CDML) system designs have been developed, for example, to perform assisted learning, federated learning, and split learning. CDML system designs show different traits, including high agent autonomy, ML model confidentiality, and fault tolerance. Facing a wide variety of CDML system designs with different traits, it is difficult for developers to design CDML systems with traits that match use case requirements in a targeted way. However, inappropriate CDML system designs may result in CDML systems failing their envisioned purposes. We developed a CDML design toolbox that can guide the development of CDML systems. Based on the CDML design toolbox, we present CDML system archetypes with distinct key traits that can support the design of CDML systems to meet use case requirements.

Recently, contrastive learning has become a key component in fine-tuning code search models for software development efficiency and effectiveness. It pulls together positive code snippets while pushing negative samples away given search queries. Among contrastive learning, InfoNCE is the most widely used loss function due to its better performance. However, the following problems in negative samples of InfoNCE may deteriorate its representation learning: 1) The existence of false negative samples in large code corpora due to duplications. 2). The failure to explicitly differentiate between the potential relevance of negative samples. As an example, a bubble sorting algorithm example is less ``negative'' than a file saving function for the quick sorting algorithm query. In this paper, we tackle the above problems by proposing a simple yet effective Soft-InfoNCE loss that inserts weight terms into InfoNCE. In our proposed loss function, we apply three methods to estimate the weights of negative pairs and show that the vanilla InfoNCE loss is a special case of Soft-InfoNCE. Theoretically, we analyze the effects of Soft-InfoNCE on controlling the distribution of learnt code representations and on deducing a more precise mutual information estimation. We furthermore discuss the superiority of proposed loss functions with other design alternatives. Extensive experiments demonstrate the effectiveness of Soft-InfoNCE and weights estimation methods under state-of-the-art code search models on a large-scale public dataset consisting of six programming languages. Source code is available at \url{//github.com/Alex-HaochenLi/Soft-InfoNCE}.

We consider a broadband over-the-air computation empowered model aggregation approach for wireless federated learning (FL) systems and propose to leverage an intelligent reflecting surface (IRS) to combat wireless fading and noise. We first investigate the conventional node-selection based framework, where a few edge nodes are dropped in model aggregation to control the aggregation error. We analyze the performance of this node-selection based framework and derive an upper bound on its performance loss, which is shown to be related to the selected edge nodes. Then, we seek to minimize the mean-squared error (MSE) between the desired global gradient parameters and the actually received ones by optimizing the selected edge nodes, their transmit equalization coefficients, the IRS phase shifts, and the receive factors of the cloud server. By resorting to the matrix lifting technique and difference-of-convex programming, we successfully transform the formulated optimization problem into a convex one and solve it using off-the-shelf solvers. To improve learning performance, we further propose a weight-selection based FL framework. In such a framework, we assign each edge node a proper weight coefficient in model aggregation instead of discarding any of them to reduce the aggregation error, i.e., amplitude alignment of the received local gradient parameters from different edge nodes is not required. We also analyze the performance of this weight-selection based framework and derive an upper bound on its performance loss, followed by minimizing the MSE via optimizing the weight coefficients of the edge nodes, their transmit equalization coefficients, the IRS phase shifts, and the receive factors of the cloud server. Furthermore, we use the MNIST dataset for simulations to evaluate the performance of both node-selection and weight-selection based FL frameworks.

Hybrid model predictive control (MPC) with both continuous and discrete variables is widely applicable to robotic control tasks, especially those involving contact with the environment. Due to the combinatorial complexity, the solving speed of hybrid MPC can be insufficient for real-time applications. In this paper, we proposed a hybrid MPC solver based on Generalized Benders Decomposition (GBD) with continual learning. The algorithm accumulates cutting planes from the invariant dual space of the subproblems. After a short cold-start phase, the accumulated cuts provide warm-starts for the new problem instances to increase the solving speed. Despite the randomly changing environment that the control is unprepared for, the solving speed maintains. We verified our solver on controlling a cart-pole system with randomly moving soft contact walls and show that the solving speed is 2-3 times faster than the off-the-shelf solver Gurobi.

Graph neural networks (GNNs) are a popular class of machine learning models whose major advantage is their ability to incorporate a sparse and discrete dependency structure between data points. Unfortunately, GNNs can only be used when such a graph-structure is available. In practice, however, real-world graphs are often noisy and incomplete or might not be available at all. With this work, we propose to jointly learn the graph structure and the parameters of graph convolutional networks (GCNs) by approximately solving a bilevel program that learns a discrete probability distribution on the edges of the graph. This allows one to apply GCNs not only in scenarios where the given graph is incomplete or corrupted but also in those where a graph is not available. We conduct a series of experiments that analyze the behavior of the proposed method and demonstrate that it outperforms related methods by a significant margin.

In this paper, we propose the joint learning attention and recurrent neural network (RNN) models for multi-label classification. While approaches based on the use of either model exist (e.g., for the task of image captioning), training such existing network architectures typically require pre-defined label sequences. For multi-label classification, it would be desirable to have a robust inference process, so that the prediction error would not propagate and thus affect the performance. Our proposed model uniquely integrates attention and Long Short Term Memory (LSTM) models, which not only addresses the above problem but also allows one to identify visual objects of interests with varying sizes without the prior knowledge of particular label ordering. More importantly, label co-occurrence information can be jointly exploited by our LSTM model. Finally, by advancing the technique of beam search, prediction of multiple labels can be efficiently achieved by our proposed network model.

北京阿比特科技有限公司